(42-2) 08 * << * >> * Русский * English * Содержание * Все выпуски

A compact design of a balanced 1×4 optical power splitter based on silicon on insulator slot waveguides
Butt M.A., Reddy A.N.K., Khonina S.N.

Samara National Research University, Samara, Russia,

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

 PDF, 996 kB

DOI: 10.18287/2412-6179-2018-42-2-244-247

Страницы: 244-247.

Аннотация:
In this paper, a compact design of a balanced 1×4 optical power splitter based on coupled mode theory (CMT) is presented. The design consists of seven vertically slotted waveguides based on the silicon-on-insulator platform. The 1×4 OPS is modelled using commercial finite element method (FEM) simulation tool COMSOL Multiphysics 5.1. The optimized OPS is capable of working across the whole C-band with maximum ~39 % of power decay in the wavelength range 1530 – 1565 nm.

Ключевые слова:
slot waveguides, 1×4 power splitter, SOI, C-band, finite element method.

Цитирование:
Butt MA, Reddy ANK, Khonina SN. A compact design of a balanced 1×4 optical power splitter based on silicon on insulator slot waveguides. Computer Optics 2018; 42(2): 244-247. DOI: 10.18287/2412-6179-2018-42-2-244-247.

Литература:

  1. Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Luyssaert B, Van Campenhout J, Bienstman P, Van Thourhout D. Nanophotonic waveguides in Silicon-on-Insulator fabricated with CMOS technology. J Lightw Technol 2005; 23(1): 401-412. DOI: 10.1109/JLT.2004.834471.
  2. Huang JZ, Scarmozzino R, Osgood RM. A new design approach to large input/output number multimode interference couplers and its application to low-cross talk WDM routers. IEEE Photon Technol Lett 1998; 10(9): 1292-1294. DOI: 10.1109/68.705620.
  3. Butt MA, Solé R, Pujol MC, Ródenas A, Lifante G, Choudhary A, Murugan GS, Shepherd DP, Wilkinson JS, Aguiló M, Díaz F. Fabrication of Y-splitters and Mach-Zehnder structures on (Yb, Nb):RTiOPO4/RbTiOPO4 epitaxial layers by reactive ion etching. J Lightw Technol 2015; 33(9): 1863-1871. DOI: 10.1109/JLT.2014.2379091.
  4. Mogensen KB, Kwok YC, Eijkel JCT, Peterson NJ, Manz A, Kutter JP. A microfluidic device with an integrated waveguide beam splitter for velocity measurements of flowing particles by Fourier transformation. Anal Chem 2003; 75(18): 4931-4936. DOI: 10.1021/ac034427a.
  5. Phillips AJ, Senior JM, Mercinelli R, Valvo M, Vetter PJ, Martin CM, van Deventer MO, Vaes P, Qiu XZ. Redundancy strategies for a high splitting optically amplified passive optical network. J Lightw Technol 2011; 19(2): 137-149. DOI: 10.1109/50.917866.
  6. Gamet J, Pandraud G. Field matching Y-branch for low power splitter. Opt Commun 2005; 248(4-6): 423-429. DOI: 10.1016/j.optcom.2004.12.040.
  7. Butt MA, Pujol MC, Sole R, Rodenas A, Lifante G, Wilkinson JS, Aguilo M, Diaz F. Channel waveguides and Mach-Zehnder structures on RbTiOPO4 by Cs+ ion exchange. Opt Mat Express 2015; 5(5): 1183-1194. DOI: 10.1364/OME.5.001183.
  8. Kim JH, Dudley BW, Moyer PJ. Experimental demonstration of replicated multimode interferometer power splitter in Zr-doped sol-gel. J Lightw Technol 2006; 24(1); 612-616. DOI: 10.1109/JLT.2005.859849.
  9. Chen B, Huang L, Li YD, Liu CL, Liu GZ. Flexible optical waveguide beam splitters based on directional coupling. JOSA B 2011; 28(11): 2680-2684. DOI: 10.1364/JOSAB.28.002680.
  10. Yu TB, Wang QJ, Zhang J, Yang JY, Yu SF. Ultracompact 2x2 photonic crystal waveguide power splitter based on self imaging effect realized by asymmetric interference. IEEE Photonics Technol Lett 2011; 23(16): 1151-1153. DOI: DOI: 10.1109/LPT.2011.2154360.
  11. Zhu S, Lo GQ, Kwong DL. Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide. Appl Phys Lett 2011; 99(3): 031112. DOI: 10.1063/1.3615306.
  12. Malka D, Danan Y, Ramon Y, Zalevsky Z. A photonic 1x4 power splitter based on Multimode Interference in Silicon-Gallium-Nitride slot waveguide structures, Materials 2016; 9(7): 516-523. DOI: 10.3390/ma9070516.
  13. Chen B, Liu C, Si J. Design of broadband power splitters using two-mode interference in slot waveguides. Opt Commun 2015; 355: 367-375. DOI: DOI: 10.1016/j.optcom.2015.07.009.
  14. Almeida VR, Xu Q, Barrios CA, Lipson M. Guiding and confining light in the void nanostructure. Opt Lett 2004; 29(14): 1209-1211. DOI: 10.1364/OL.29.001209.
  15. Xu QF, Almeida VR, Panepucci RR, Lipson M. Experimental demonstration of guiding and confining in nanometer-size low-refractive-index material. Opt Lett 2004; 29(14): 1626-1628. DOI: 10.1364/OL.29.001626.
  16. Butt MA, Khonina SN, Kazanskiy NL. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J Mod Opt 2018; 65(2), 174-178. DOI: 10.1080/09500340.2017.1382596.
  17. Degtyarev SA, Butt MA, Khonina SN, Skidanov RV. Modeling of TiO2 based slot waveguides with optical confinement in sharp bends. Proc ICE Cube 2016: 7495222. DOI: DOI: 10.1109/ICECUBE.2016.7495222.
  18. Barrios CA, Sánchez B, Gylfason KB, Griol A, Sohlström H, Holgado M, Casquel R. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform. Opt Express 2007; 15(11): 6846-6856. DOI: 10.1364/OE.15.006846.
  19. Fujisawa T, Koshiba M. Polarization-independent optical directional coupler based on slot waveguides. Opt Lett 2006; 31(1): 56-58. DOI: 10.1364/OL.31.000056.
  20. Dai D, Wang Z, Bowers JE. Ultra short broadband polarization beam splitter based on an asymmetrical directional coupler. Opt Lett 2011; 36(13): 2590-2592. DOI: 10.1364/OL.36.002590.
  21. Huang WP. Coupled-mode theory for optical waveguides: an overview. JOSA A 1994; 11(3): 963-983. DOI: 10.1364/JOSAA.11.000963.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20