(45-2) 05 * << * >> * Русский * English * Содержание * Все выпуски

Индуцированный дихроизм в волоконных оптических резонаторах со встроенным оптически активным элементом
К.Н. Алексеев 1, Е.В. Баршак 1, Д.В. Викулин 1, Б.П. Лапин 1, М.А. Яворский 1

Крымский федеральный университет им. В.И. Вернадского,
295007, Россия, г. Симферополь, пр. Академика Вернадского, д. 4

 PDF, 1203 kB

DOI: 10.18287/2412-6179-CO-750

Страницы: 200-207.

Аннотация:
В данной работе продемонстрировано возникновение индуцированного кругового дихроизма для фундаментальной моды в волоконных резонаторах петлевого и кольцевого типа при внесении оптически активного элемента в петлю (кольцо) резонатора. Изменение параметров резонатора, оптически активного элемента или длины волны входящего поля позволяет устанавливать величину наведённого дихроизма и фактически усиливать оптическую активность элемента. Показано, что данные резонаторы могут быть использованы в качестве рабочих элементов полностью волоконных поляризаторов для фундаментальной моды.

Ключевые слова:
волоконный петлевой резонатор, волоконный кольцевой резонатор, круговой дихроизм.

Благодарности
Работа выполнена при поддержке Совета по грантам Президента Российской Федерации (Грант № МК-329.2020.2) и поддержке Программы развития на 2015 – 2024 гг. Крымского федерального университета им. В.И. Вернадского (Грант № BГ 02/2020).

Цитирование:
Алексеев, К.Н. Индуцированный дихроизм в волоконных оптических резонаторах со встроенным оптически активным элементом / К.Н. Алексеев, Е.В. Баршак, Д.В. Викулин, Б.П. Лапин, М.А. Яворский // Компьютерная оптика. – 2021. – Т. 45, № 2. – С. 200-207. – DOI: 10.18287/2412-6179-CO-750.

Citation:
Alexeyev CN, Barshak EV, Vikulin DV, Lapin BP, Yavorsky MA. Induced dichroism in fiber optical resonators with an embedded optically active element. Computer Optics 2021; 45(2): 200-207. DOI: 10.18287/2412-6179-CO-750.

Литература:

  1. Гиротропия кристаллов / В.А. Кизель, В.И. Бурков. – М.: Наука, 1980. – 304 с.
  2. Оптика анизотропных сред / Ф.И. Федоров. – Минск: Издательство АН БССР, 1958. – 382 с.
  3. Физика магнитных явлений / Г.С. Кринчик. – М.: Издательство Московского университета, 1976. – 368 с.
  4. Lakhtakia, A. Sculptured thin films: nanoengineered morphology and optics / A. Lakhtakia, R. Messier. – Bellingham, WA: SPIE Press, 2005. – 336 p.
  5. Park, H.S. A general recipe for nondispersive optical activity in bilayer chiral metamaterials / H.S. Park, J. Park, J. Son, Y. Kim, H. Cho, J. Shin, W. Jeon, B. Min // Advanced Optical Materials. – 2019. – Vol. 7. – 1801729. – DOI: 10.1002/adom.201801729.
  6. Xie, F. Lattice collective interaction engineered optical activity in metamaterials / F. Xie, W. Wu, M. Ren, W. Cai, J. Xu // Advanced Optical Materials. – 2020. – Vol. 8. – 1901435.
  7. Rodrigues, S.P. Intensity-dependent modulation of optically active signals in a chiral metamaterial / S.P. Rodrigues, S. Lan, L. Kang, Y. Cui, P.W. Panuski, S. Wang, A.M. Urbas, W. Cai // Nature Communications. – 2017. – Vol. 8. – 14602. – DOI: 10.1038/ncomms14602.
  8. Verbiest, T. Feature issue introduction: chirality in optics / T. Verbiest, G. Koeckelberghs, B. Champagne // Optical Materials Express. – 2014. – Vol. 4. – P. 2663-2665. – DOI: 10.1364/OME.4.002663.
  9. Yoshino, T. Theory for the Faraday effect in optical fiber / T. Yoshino // Journal of the Optical Society of America B. – 2005. – Vol. 22. – P. 1856-1860. – DOI: 10.1364/JOSAB.22.001856.
  10. Ulrich, R. Polarization optics of twisted single-mode fibres / R. Ulrich, A. Simon // Applied Optics. – 1979. – Vol. 18. – P. 2241-2251.
  11. Barshak, E.V. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission / E.V. Barshak, C.N. Alexeyev, B.P. Lapin, M.A. Yavorsky // Physical Review A. – 2015. – Vol. 91. – 033833. – DOI: 10.1103/PhysRevA.91.033833.
  12. Xi, X.M. Optical activity in twisted solid-core photonic crystal fibers / X.M. Xi, T. Weiss, G.K.L. Wong, F. Biancalana, S.M. Barnett, M.J. Padgett, P.St.J. Russell // Physical Review Letters. – 2013. – Vol. 110. – 143903. – DOI: 10.1103/PhysRevLett.110.143903.
  13. Russell, P.S.J. Helically twisted photonic crystal fibres / P.S.J. Russell, R. Beravat, G.K.L. Wong // Philosophical Transactions of the Royal Society A. – 2017. – Vol. 375. – 20150440. – DOI: 10.1098/rsta.2015.0440.
  14. Weiss, T. Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers / T. Weiss, G.K.L. Wong, F. Biancalana, S.M. Barnett, X.M. Xi, P.St.J. Russell // Journal of the Optical Society of America B. – 2013. – Vol. 30. – P. 2921-2927.
  15. Chen, L. Photonic crystal fiber polarization rotator based on the topological Zeeman effect / L. Chen, W.-G. Zhang, T.-Y. Yan, L. Wang, J. Sieg, B. Wang, Q. Zhou, L.-Y. Zhang // Optics Letters. – 2015. – Vol. 40. – P. 3448-3451. – DOI: 10.1364/OL.40.003448.
  16. Alexeyev, C.N. Optical activity in multihelicoidal optical fibers / C.N. Alexeyev, B.P. Lapin, G. Milione, M.A. Yavorsky // Physical Review A. – 2015. – Vol. 92. – 033809. – DOI: 10.1103/PhysRevA.92.033809.
  17. Alexeyev, C.N. Reciprocal optical activity in multihelicoidal optical fibers / C.N. Alexeyev, E.V. Barshak, B.P. Lapin, M.A. Yavorsky // Physical Review A. – 2018. – Vol. 98. – 023824. – DOI: 10.1103/PhysRevA.98.023824.
  18. Alexeyev, C.N. Polarization plane rotation for higher order modes in twisted optical fibers with discrete rotationally symmetric core / C.N. Alexeyev, M.C. Alexeyeva, B.P. Lapin, D.V. Vikulin, M.A. Yavorsky // Journal of Physics: Conference Series. – 2018. – Vol. 1124. – 051006. – DOI: 10.1088/1742-6596/1124/5/051006.
  19. Chiao, R.Y. Manifestation of Berry’s topological phase for the photon / R.Y. Chiao, Y.-S. Wu // Physical Review Letters. – 1986. – Vol. 57. – P. 933-936. – DOI: 10.1103/PhysRevLett.57.933.
  20. Tomita, A. Observation of Berry’s topological phase by use of an optical fibre / A. Tomita, R.Y. Chiao // Physical Review Letters. – 1986. – Vol. 57. – P. 937-940. – DOI: 10.1103/PhysRevLett.57.937.
  21. Alekseyev, K.N. Propagation of optical vortices in coiled weakly guiding optical fibers / K.N. Alekseyev, M.A. Yavorsky // Optics and Spectroscopy. – 2007. – Vol. 102. – P. 754-759. – DOI: 10.1134/S0030400X07050177.
  22. Li, P. Self-accelerated optical activity in free space induced by the Gouy phase / P. Li, X. Fan, D. Wu, B. Liu, Y. Li, J. Zhao // Photonics Research. – 2020. – Vol. 8. – P. 475-481. – DOI: 10.1364/PRJ.380675.
  23. Wong, G.K.L. Enhanced optical activity and circular dichroism in twisted photonic crystal fiber / G.K.L. Wong, X.M. Xi, M.H. Frosz, P.S.J. Russell // Optics Letters. – 2015. – Vol. 40. – P. 4639-4642. – DOI: 10.1364/OL.40.004639.
  24. Alexeyev, C.N. Resonance optical activity in multihelicoidal optical fibers / C.N. Alexeyev, B.P. Lapin, M.A. Yavorsky // Optics Letters. – 2016. – Vol. 41. – P. 962-965. – DOI: 10.1364/OL.41.000962.
  25. Golub, I. Berry’s phase amplification by a ring resonator / I. Golub // Optics Letters. – 2006. – Vol. 31. – P. 3342-3344. – DOI: 10.1364/OL.31.003342.
  26. Golub, I. Observation of Berry’s phase amplification by a ring resonator / I. Golub, T. Audet, L. Imobekhai // Journal of the Optical Society of America B. – 2010. – Vol. 27. – P. 1698-1700. – DOI: 10.1364/JOSAB.27.001698.
  27. Stokes, L.F. All-single-mode fiber resonator / L.F. Stokes, M. Chodorow, H.J. Shaw // Optics Letters. – 1982. – Vol. 7. – P. 288-230. – DOI: 10.1364/OL.7.000288.
  28. Zhang, F. Direct-coupling single-mode fiber ring resonator / F. Zhang, J.W.Y. Lit // Journal of the Optical Society of America A. – 1988. – Vol. 5. – P. 1347-1355. – DOI: 10.1364/JOSAA.5.001347.
  29. Yu, W. A tunable all-fiber filter based on microfiber loop resonator / W. Yu, Z. Xu, H. Changlun, B. Jian, Y. Guoguang // Applied Physics Letters. – 2008. – Vol. 92. – 191112. – DOI: 10.1063/1.2926672.
  30. Liu, D. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range / D. Liu, C. Zhang, D. Liang, D. Dai // Optics Express. – 2019. – Vol. 27. – P. 416-422. – DOI: 10.1364/OE.27.000416.
  31. Madamopoulos, N. Fiber loop mirror based single-platform multifunctional Michelson–Gires–Tournois filter / N. Madamopoulos // Optics Communications. – 2019. – Vol. 436. – P. 134-142.
  32. Mistry, A. Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers / A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, N.A.F. Jaeger // Optics Letters. – 2018. – Vol. 43. – P. 6041-6044. – DOI: 10.1364/OL.43.006041.
  33. Talataisong, W. A review of microfiber-based temperature sensors / W. Talataisong, R. Ismaeel, G. Brambilla // Sensors. – 2018. – Vol. 18. – 461. – DOI: 10.3390/s18020461.
  34. Linslal, C.L. Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection / C.L. Linslal, P.M. Syam Mohan, A. Halder, T.K. Gangopadhyay // Sensors and Actuators A: Physical. – 2013. – Vol. 194. – P. 160-168. – DOI: 10.1016/j.sna.2013.01.021.
  35. Xu, F. Demonstration of a refractometric sensor based on optical microfiber coil resonator / F. Xu, G. Brambilla // Applied Physics Letters. – 2008. – Vol. 92. – 101126. – DOI: 10.1063/1.2898211.
  36. Wang, Q. Research on fiber loop coupled resonator slow light and displacement sensing technology / Q. Wang, X. Feng, Y. Zhao, J. Li, H. Hu // Sensors and Actuators A: Physical. – 2015. – Vol. 233. – P. 472-479. – DOI: 10.1016/j.sna.2015.08.004.
  37. Yuan, G. Autler–Townes splitting biosensing based on a nonuniform photonic crystal waveguide with feedback loop / G. Yuan, F. Peng, L. Guan, Z. Peng, Z. Wang // Applied Optics. – 2018. – Vol. 57. – P. 6976-6981. – DOI: 10.1364/AO.57.006976.
  38. Fülöp, A. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators / A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó.B. Helgason, P.-H. Wang, Y. Xuan, D.E. Leaird, M. Qi, P.A. Andrekson, A.M. Weiner, V. Torres-Company // Nature Communications. – 2018. – Vol. 9. – 1598. – DOI: 10.1038/s41467-018-04046-6.
  39. Butt, M.A. Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Waves in Random and Complex Media. – 2020. – P. 1-10. – DOI: 10.1080/17455030.2020.1744769.
  40. Butt, M.A. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // IEEE Sensors Journal. – 2020. – Vol. 20, Issue 3. – P. 1355-1362. – DOI: 10.1109/JSEN.2019.2944391.
  41. Alexeyev, C.N. Inversion of the topological charge of optical vortices in a coil fiber resonator / C.N. Alexeyev, A.V. Milodan, M.C. Alexeyeva, M.A. Yavorsky // Optics Letters. – 2016. – Vol. 41. – P. 1526-1529. – DOI: 10.1364/OL.41.001526.
  42. Alexeyev, C.N. Transmission of optical vortices through fiber loop resonators / C.N. Alexeyev, E.V. Barshak, B.P. Lapin, M.A. Yavorsky // Optics Letters. – 2019. – Vol. 44. – P. 4044-4047. – DOI: 10.1364/OL.44.004044.
  43. Zheng, J. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator / J. Zheng, A. Yang, T. Wang, X. Zeng, N. Cao, M. Liu, F. Pang, T. Wang // Photonics Research. – 2018. – Vol. 6. – P. 396-402. – DOI: 10.1364/PRJ.6.000396.
  44. Alexeyev, C.N. Topological resonances, super-efficient OAM control and spin-orbit interaction enhancement in fiber loop resonators / C.N. Alexeyev, E.V. Barshak, B.P. Lapin, M.A. Yavorsky // Physical Review A. – 2020. – Vol. 101. – 063801. – DOI: 10.1103/PhysRevA.101.063801.
  45. Sumetsky, M. The microfiber loop resonator: Theory, experiment, and application / M. Sumetsky, Y. Dulashko, J.M. Fini, A. Hale, D.J. DiGiovanni // Journal of Lightwave Technology. – 2006. – Vol. 24. – P. 242-250. – DOI: 10.1109/JLT.2005.861127.
  46. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides / A. Yariv // Electronics Letters. – 2000. – Vol. 36. – P. 321-322.. – DOI: 10.1049/el:20000340.
  47. Snyder, A.W. Optical waveguide theory / A.W. Snyder, J.D. Love. – London, New York: Chapman and Hall, 1985. – 750 p.
  48. Wu, X. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform / X. Wu, T. Fan, A.A. Eftekhar, A. Adibi // Optics Letters. – 2019. – Vol. 44. – P. 4941-4944. – DOI: 10.1364/OL.44.004941.
  49. Vollmer, F. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid / F. Vollmer, P. Fischer // Optics Letters. – 2006. – Vol. 31. – P. 453-455. – DOI: 10.1364/OL.31.000453.
  50. Decker, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity / M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener // Optics Letters. – 2010. – Vol. 35. – P. 1593-1595. – DOI: 10.1364/OL.35.001593.
  51. Qu, Y. Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure / Y. Qu, L. Huang, L. Wang, Z. Zhang // Optics Express. – 2017. – Vol. 25. – P. 5480-5487. – DOI: 10.1364/OE.25.005480.
  52. Hu, L. Enhanced circular dichroism in hybrid graphene–metal metamaterials at the near-infrared region / L. Hu, H. Dai, F. Xi, Y. Tang, F. Cheng // Optics Communications. – 2020. – Vol. 473. – 125947. – DOI: 10.1016/j.optcom.2020.125947.
  53. Досколович, Л.Л. Резонансные магнитооптические эффекты в дифракционных решетках с намагниченным слоем / Л.Л. Досколович, Е.А. Безус, Д.А. Быков, В.И. Белотелов, А.К. Звездин // Компьютерная оптика. – 2007. – Т. 31, № 1. – С. 4-8.
  54. Plum, E. Extrinsic electromagnetic chirality in metamaterials / E. Plum, V.A. Fedotov, N.I. Zheludev // Journal of Optics A: Pure and Applied Optics. – 2009. – Vol. 11. – 074009. – DOI: 10.1088/1464-4258/11/7/074009.
  55. Schmidt, M.A. Complex Faraday rotation in microstructured magneto-optical fiber waveguides / M.A. Schmidt, L. Wondraczek, H.W. Lee, N. Granzow, N. Da, P.S.J. Russell // Advanced Materials. – 2011. – Vol. 23. – P. 2681-2688. – DOI: 10.1002/adma.201100364.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20