(46-5) 17 * << * >> * Русский * English * Содержание * Все выпуски

Способы дискретизации энергетических характеристик двумерных случайных сигналов
В.В. Сюзев 1, А.В. Пролетарский 1, Д.А. Миков 1, И.И. Дейкин 1

МГТУ им. Н.Э. Баумана, 105005, Россия, г. Москва, ул. 2-я Бауманская, д. 5/1

 PDF, 1340 kB

DOI: 10.18287/2412-6179-CO-1074

Страницы: 828-839.

Аннотация:
Статья посвящена способам дискретизации энергетических характеристик двумерных случайных сигналов в рамках имитации случайных сигналов по оригинальному гармоническому методу, являющемуся обобщением известного алгоритма В.С. Пугачёва на двумерный случай. Требования к способу дискретизации выдвигаются с целью снижения вычислительной сложности метода имитации и повышения его гибкости за счёт снятия ограничений по виду автокорреляционных функций и функций спектральной плотности энергии. Предлагается применение погрешности имитации в роли критерия оценки качества. Способ дискретизации рассмотрен для сигналов, заданных как на неограниченных интервалах определения, так и на ограниченных. В статье продемонстрированы результаты работы программной системы, реализующей оригинальный метод имитации с применением описанных способов дискретизации, в обоих случаях. Показана работоспособность и эффективность полученных результатов, которые имеют как самостоятельное научно-техническое значение, так и могут быть использованы для разработки новых эффективных спектральных средств имитации сигналов для использования в интеллектуальных системах поддержки принятия решений.

Ключевые слова:
случайный двумерный сигнал, моделирование и имитация сигналов, базисные функции, коэффициенты Фурье, энергетические характеристики сигналов, функция спектральной плотности энергии, автокорреляционная функция, интеллектуальные системы поддержки принятия решений, сверхбыстрая обработка информации.

Цитирование:
Сюзев, В.В. Способы дискретизации энергетических характеристик двумерных случайных сигналов / В.В. Сюзев, А.В. Пролетарский, Д.А. Миков, И.И. Дейкин // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 828-839. – DOI: 10.18287/2412-6179-CO-1074.

Citation:
Syuzev VV, Proletarsky AV, Mikov DA, Deykin II. Techniques of sampling the energy characteristics of two-dimensional random signals. Computer Optics 2022; 46(5): 828-839. DOI: 10.18287/2412-6179-CO-1074.

References:

  1. Syuzev VV, Smirnova EV, Proletarsky AV. Algorithms of multidimensional simulation of random processes. Computer Optics 2021; 45(4): 627-637. DOI: 10.18287/2412-6179-CO-770.
  2. Dudgeon DE, Mersereau RM. Multidimensional digital signal processing. Prentice Hall; 1983.
  3. Yaroslavsky LP. An introduction to digital imaging [In Russian]. Moscow: "Sovetskoe Radio" Publisher; 1979.
  4. Bykov VV. Digital modeling in statistical radio engineering [In Russian]. Moscow: "Sovetskoe Radio" Publisher; 1971.
  5. Deykin II. One- and unidirectional two-dimensional signal imitation in complex basis (Extended abstract). In Book: Thalheim B, Makhortov S, Sychev A, eds. Data analytics and management in data intensive domains. Extended abstracts of the ХХII International Conference DAМDID/RCDL' 2020. Voronezh: Voronezh State University Publisher; 2020: 229-232.
  6. Katkovnik VY, Poluektov RA. Multidimensional discrete control signals [In Russian]. Moscow: "Nauka" Publisher; 1966.
  7. Sotnikov AA, Yakupov SZ, Romanovsky AS. Application of simulation modeling for control of computing systems of hydro-location complexes [In Russian]. Science and Education 2013; 6: 351-364. DOI: 10.7463/0613.0570096.
  8. Shaktarin BN. Random processes in radio engineering: A series of lectures [In Russian]. Moscow: "Radio i Svyaz" Publisher; 2000.
  9. Abdulkadhim HA, Andriyanov NA. Brief review on random fields modeling method [In Russian]. Radio-elektronnaya Tehnika 2018; 1(11): 139-142.
  10. Vasilyev KK, Andriyanov NA, Abdulkadhim HA. Efficiency of filtering random fields with multiple roots of characteristic equations [In Russian]. Radiotehnika 2018; 6: 20-23.
  11. Podrouzek J, Vorel J, Wan-Wendner R. Random and gradient based fields in discrete particle models of heterogeneous materials. 1st Int Conf on Uncertainty Quantification in Computational Sciences and Engineering 2017: 605-615. DOI: 10.7712/120217.5396.16710.
  12. Rabiner LR, Gold B. Theory and application of digital signal processing. Prentice Hall; 1975.
  13. Liu Y, Li J, Sun S, Yu B. Advances in Gaussian random field generation: A review. Comput Geosci 2019; 23: 1011-1047. DOI: 10.1007/s10596-019-09867-y.
  14. Pugachev VS. The theory of random functions and its application to problems of automatic control [In Russian]. Moscow: "Fizmatlit" Publisher, 1962.
  15. Syuzev VV. Fundamentals of the theory of digital signal processing [In Russian]. Moscow: "RTSoft" Publisher; 2014.
  16. Deikin II, Syuzev VV, Gurenko VV, Smirnova EV, Lyubavsky KK. Simulation of random bandpass signals in a complex basis [In Russian]. Problems of Modern Science and Education 2019; 11(144): 9-14.
  17. Syuzev VV, Gurenko VV. Harmonic algorithms for signal simulation within the framework of the correlation theory [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2017; 4: 98-117. DOI: 10.18698/0236-3933-2017-4-98-117.
  18. Kotelnikov VA. On the bandwidth of ether and wire in telecommunications [In Russian]. Materials for the I All-Union Congress on the issues of technical reconstruction of communications and the development of low-current industry 1933.
  19. Kanev A, Terekhov V, Kochneva M, Chernenky V, Skvortsova M. Hybrid intelligent system of crisis assessment using natural language processing and metagraph knowledge base. 2021 IEEE Conf of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) 2021: 2099-2103. DOI: 10.1109/ElConRus51938.2021.9396100.
  20. Suyatinov SI, Buldakova TI, Vishnevskaya JA. Identification of situations based on synergetic model. 2021 3rd Int Conf on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2021: 509-514. DOI: 10.1109/SUMMA53307.2021.9632207.
  21. Skvortsova M, Grout V. Basic approaches to assessing risks and threats in decision support systems. 2018 IEEE Conf of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 2018: 1563-1566. DOI: 10.1109/EIConRus.2018.8317397.
  22. Andreev A, Berezkin D. Kozlov I. Approach to Forecasting the development of situations based on event detection in heterogeneous data streams. In Book: Kalinichenko L, Manolopoulos Y, Malkov O, Skvortsov N, Stupnikov S, Sukhomlin V, eds. Data analytics and management in data intensive domains. DAMDID/RCDL 2017. Cham: Springer; 2018: 213-229. DOI: 10.1007/978-3-319-96553-6_16.
  23. Syuzev VV. Digital signal processing: methods and algorithms. Part 2: Fourier transforms in classical and generalized bases, fast DSP algorithms on static and sliding time intervals [In Russian]. Moscow: "Research Institute of Radio Electronics and Laser Technology" Publisher; 2012.
  24. Smirnova EV, Syuzev VV, Samarev RS, Deykin II, Proletarsky AV. High-dimensional simulation processes in new energy theory: Experimental research (Extended abstract). In Book: Thalheim B, Makhortov S, Sychev A, eds. Data analytics and management in data intensive domains. Extended abstracts of the ХХII International Conference DAМDID. Voronezh: Voronezh State University Publisher; 2020: 160-163.
  25. Gurenko VV, Bychkov BI. The discretization of the energy characteristics of signals in harmonic simulation algorithms. 2019 IEEE Conf of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 2019: 2142-2147. DOI: 10.1109/EIConRus.2019.8657153.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20