ДИФРАКЦИОННАЯ ОПТИКА

АСИМПТОТИЧЕСКИЙ МЕТОД РАСЧЕТА ПОЛЯ ОТ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ, ОБЛАДАЮЩИХ ЗОННОЙ СТРУКТУРОЙ

С.И. Харитонов^{1,2}, Л.Л. Досколович^{1,2}, Н.Л. Казанский^{1,2}, М.Л. Каляев^{1,2} ¹Институт систем обработки изображений РАН, Самара, Россия, ²Самарский государственный аэрокосмический университет, Самара, Россия

Аннотация

Представлен новый асимптотический метод решения задачи дифракции света на дифракционных оптических элементах (ДОЭ) с зонной структурой. Метод включает строгое решение задачи дифракции на периодической структуре с периодом, сравнимым с длиной волны, и асимптотический подход к расчету поля за ДОЭ. Получено решение задачи дифракции света на эталонной квазипериодической структуре, сочетающей в себе функции дифракционной решетки и дифракционной линзы. На основе решения эталонной задачи получена простая аппроксимация для поля непосредственно за ДОЭ.

Введение

Рассмотрим дифракцию света на дифракционном оптическом элементе (ДОЭ), обладающем зонной структурой. Свет представляет собой электромагнитные волны, и поэтому строгое решение задачи дифракции должно быть основано на решении системы уравнений Максвелла с соответствующими задаче граничными условиями. Однако на практике хорошо известно, что решение уравнений Максвелла в коротковолновой области весьма трудоемкая задача даже для современных компьютеров. Для оценки поведения решения системы уравнений Максвелла в коротковолновой области широко используются асимптотические методы. Наиболее известным асимптотическим методом является приближение геометрической оптики [1]. Приближение геометрической оптики хорошо работает в случае, когда свойства среды слабо меняются на расстояниях сравнимых с длиной волны освещающего пучка. Методы решения задач дифракции на периодических структурах, основанные на точном решении уравнений Максвелла, хорошо известны [2]. Если структура не является периодической, то для решения задач дифракции используются конечно-разностные методы [3] или методы, основанные на решении соответствующих интегральных уравнений [4]. В работах [5-7] рассмотрены асимптотические методы решения волновых уравнений для решения задач дифракции в рамках скалярной теории. В работе [8] представлены методы расчета поля от спиральной фазовой пластинки в рамках параксиальной векторной теории. В работе [9] разработаны методы решения задач дифракции на микрочастицах.

В данной работе рассматривается асимптотический подход к решению широкого класса задач дифракции в рамках электромагнитной теории. Подход основан на синтезе асимптотического метода к расчету поля после ДОЭ, основанного на вычислении интеграла Кирхгофа-Котлера методом стационарной фазы, и решения задач дифракции на квазипериодических структурах внутри ДОЭ. Полученные с использованием данного метода формулы для поля от ДОЭ можно легко интерпретировать в рамках геометрической оптики.

Применение асимптотических методов в физике связано в основном с использованием геометрической оптики [1], квазиклассического приближения в квантовой механике, а также с вычислением интеграла Кирхгофа-Гюйгенса [10] или Кирхгофа-Котлера [11] методом стационарной фазы или методом перевала. Физический смысл подхода в геометрической оптике состоит в замене решения исходной задачи на решение задачи дифракции локальной плоской волны в локально однородной среде или на плоской границе раздела двух сред. Метод перевала и метод стационарной фазы [10-12] также основаны на замене вычисляемого интеграла некоторым эталонным интегралом. Эти методы были положены в основу результатов, изложенных нами в работах [5-7] в рамках скалярной теории дифракции. В настоящей статье предложенный в [5-7] подход обобщен на случай строгой электромагнитной теории.

1. Теория представлений для уравнений Максвелла

В данной работе расчет поля проводится в рамках строгой векторной электромагнитной теории. В декартовой системе координат систему уравнений Максвелла [13] для гармонических по времени полей можно представить в виде

$$\frac{i}{k_0}\frac{\partial W}{\partial x_3} = HW,\tag{1}$$

где *H* – матричный дифференциальный оператор Гамильтона-Максвелла,

$$W(X) = \begin{bmatrix} E_1 \\ E_2 \\ H_1 \\ H_2 \end{bmatrix}, \quad k_0 = \frac{2\pi}{\lambda}$$

 $X = (x_1, x_2, x_3)$ – декартовы координаты, λ – длина волны, E_i – поперечные компоненты электрического поля, H_i – компоненты магнитного поля.

Для описания электромагнитного поля в случае гармонического изменения поля по времени достаточно четырех компонент электромагнитного поля. Продольные компоненты электрического (и магнитного) поля в случае необходимости можно выразить через поперечные. Представление системы уравнений Максвелла в виде (1) удобно для решения задач дифракции, в которых описывается распространение электромагнитных волн через объекты, имеющие границы в форме параллельных плоскостей. Этим свойством обладают, например, элементы плоской оптики, работающие в оптическом диапазоне.

В дальнейшем четырехкомпонентный вектор *W* будем называть бивектором, а соответствующее поле – бивекторным электромагнитным полем.

В данной работе используются введенные П. Дираком [14] обозначения для полевых функций, принятые в квантовой механике, в т.ч. δ-функции. При этом одни и те же символы с разной индексацией могут иметь разный смысл.

Выражение (1) можно рассматривать как операторную запись в абстрактном гильбертовом пространстве бивекторов. В координатном представлении оператор Гамильтона-Максвелла *H* имеет следующий вид:

$$H = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix},\tag{2}$$

$$A = \frac{-1}{2k_0^2} \begin{bmatrix} \partial/\partial x_1 & \partial/\partial x_1 \\ \partial/\partial x_2 & \partial/\partial x_2 \end{bmatrix} \begin{bmatrix} \varepsilon^{-1} & 0 \\ 0 & \varepsilon^{-1} \end{bmatrix} \times \\ \times \begin{bmatrix} -\partial/\partial x_1 & \partial/\partial x_1 \\ -\partial/\partial x_2 & \partial/\partial x_2 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$
(3)

$$\left| F_{\alpha_{1}\alpha_{2}} \right\rangle = \begin{pmatrix} \alpha_{3}\alpha_{1} \left\| W_{e} \right\|^{-1} & \alpha_{2} \left(\left\| W_{h} \right\| \sqrt{\varepsilon} \right)^{-1} \\ \alpha_{3}\alpha_{2} \left\| W_{e} \right\|^{-1} & -\alpha_{1} \left(\left\| W_{h} \right\| \sqrt{\varepsilon} \right)^{-1} \\ -\alpha_{2}\sqrt{\varepsilon} \left\| W_{e} \right\|^{-1} & \alpha_{3}\alpha_{1} \left\| W_{h} \right\|^{-1} \\ \alpha_{1}\sqrt{\varepsilon} \left\| W_{e} \right\|^{-1} & \alpha_{3}\alpha_{2} \left\| W_{h} \right\|^{-1} \end{pmatrix}$$

где
$$k = k_0 \sqrt{\varepsilon}$$
, $||W_e||^2 = (\alpha_3^2 + \varepsilon)(\alpha_1^2 + \alpha_2^3)$,
 $||W_h||^2 = (\alpha_3^2 + \varepsilon^{-1})(\alpha_1^2 + \alpha_2^3)$,
 $\alpha_3 = \sqrt{1 - (\alpha_1)^2 - (\alpha_2)^2}$.

$$B = \frac{1}{2k_0^2} \begin{bmatrix} \partial/\partial x_1 & \partial/\partial x_1 \\ \partial/\partial x_2 & \partial/\partial x_2 \end{bmatrix} \begin{bmatrix} -\partial/\partial x_1 & \partial/\partial x_1 \\ -\partial/\partial x_2 & \partial/\partial x_2 \end{bmatrix} - \begin{bmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$
(4)

где ε – диэлектрическая проницаемость среды, $\mu = 1$.

Представим решение уравнения Максвелла в виде разложения по базису

$$\left|W\right\rangle = \sum_{nms} f^{nms}\left(x_{3}\right) \left|F_{nms}\left(x_{1}, x_{2}\right)\right\rangle.$$
(5)

Набор функций $\{f^{nms}(x_3)\}$ будем называть волновыми функциями бивекторного электромагнитного поля в *F*-представлении. *nms* - набор индексов, характеризующий базисную функцию.

Каждому абстрактному оператору *H* в данном базисе можно сопоставить многомерную матрицу (или тензор [15]) H_{max}^{pql}

$$H\left|F_{nms}\left(x_{1}, x_{2}\right)\right\rangle = \sum_{nms} H_{nms}^{pqk}\left(f\right)\left|F_{pqk}\left(x_{1}, x_{2}\right)\right\rangle.$$
 (6)

В случае, когда набор базисных функций не является счетным, суммирование заменяется интегрированием. Система уравнений Максвелла в *F*-представлении записывается в виде:

$$\frac{i}{k}\frac{\partial f^{nms}}{\partial x_3} = \sum_{pql} H^{nms}_{pql}\left(x_3\right) f^{pql}\left(x_3\right).$$
(7)

Выберем в качестве системы линейно независимых решений набор функций, представляющих собой плоские волны. В этом случае решение представляется в виде:

$$\left|W\right\rangle = \sum_{s} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{\alpha_{1}\alpha_{2}z}\left(x_{3}\right) \left|F_{\alpha_{1}\alpha_{2}s}\left(x_{1},x_{2}\right)\right\rangle d\alpha_{1}d\alpha_{2}, \quad (8)$$

где α_1, α_2 – пространственные частоты.

Базисные векторы запишем в виде матрицы

$$\left|F_{\alpha_{1}\alpha_{2}}\left(x_{1},x_{2}\right)\right\rangle = \left|F_{\alpha_{1}\alpha_{2}}\right\rangle \cdot \exp\left(ik\left(\alpha_{1}x_{1}+\alpha_{2}x_{2}\right)\right), \quad (9)$$

$$\begin{aligned} & -\alpha_{3}\alpha_{1} \|W_{e}\|^{-1} & \alpha_{2} \left(\|W_{h}\|\sqrt{\varepsilon}\right)^{-1} \\ & -\alpha_{3}\alpha_{2} \|W_{e}\|^{-1} & -\alpha_{1} \left(\|W_{h}\|\sqrt{\varepsilon}\right)^{-1} \\ & -\alpha_{2}\sqrt{\varepsilon} \|W_{e}\|^{-1} & -\alpha_{3}\alpha_{1} \|W_{h}\|^{-1} \\ & \alpha_{1}\sqrt{\varepsilon} \|W_{e}\|^{-1} & -\alpha_{3}\alpha_{2} \|W_{h}\|^{-1} \end{aligned}$$
(10)

Первый столбец матрицы описывает ТЕ-волну с пространственными частотами ω_1, ω_2 , распространяющуюся в положительном направлении. Второй столбец описывает ТМ-волну с пространственными частотами ω_1, ω_2 , распространяющуюся в положительном направлении. Третий столбец описывает ТЕ-волну с пространственными частотами ω_1, ω_2 , распространяющуюся в отрицательном направлении. Четвертый столбец описывает ТМ-волну с пространственными частотами ω_1, ω_2 , распространяющуюся в отрицательном направлении. В предельном случае, когда $\alpha_1 = \alpha_2 = 0$, будем использовать матрицу следующего вида:

$$|F_{0,0}\rangle = \frac{1}{\sqrt{\varepsilon}+1} \cdot \begin{pmatrix} -1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & -\sqrt{\varepsilon} & 0 & \sqrt{\varepsilon}\\ -\sqrt{\varepsilon} & 0 & -\sqrt{\varepsilon} & 0 \end{pmatrix}.$$
 (11)

Этот случай описывает волны, распространяющиеся перпендикулярно диэлектрическому слою.

Для того, чтобы записать систему уравнений Максвелла в пространственно-частотном представлении, необходимо найти матричные элементы оператора *H* в пространственно-частотном представлении.

Матричные элементы оператора Н имеют вид:

$$H_{\alpha_{1}\alpha_{2}s}^{\omega_{1}\omega_{2}n} = \sum_{m} P_{m}^{n} \left(\omega_{1}, \omega_{2}\right) \left\langle F^{\omega_{1}\omega_{2}m} \left| G_{\alpha_{1}\alpha_{2}}^{\omega_{1}\omega_{2}} \left| F_{\alpha_{1}\alpha_{2}s} \right\rangle \right\rangle, \quad (12)$$

где P_m^n - матрица, обратная к матрице парных скалярных произведений базисных векторов (10),

$$G_{\alpha_1\alpha_2}^{\omega_1\omega_2} = \begin{bmatrix} 0 & A_{\alpha_1\alpha_2}^{\omega_1\omega_2} \\ B_{\alpha_1\alpha_2}^{\omega_1\omega_2} & 0 \end{bmatrix},$$
 (13)

$$A_{\alpha_{1}\alpha_{2}}^{\omega_{1}\omega_{2}} = \varepsilon^{-1} \left(\omega_{1} - \alpha_{1}, \omega_{2} - \alpha_{2} \right) Q - \delta \left(\omega_{1} - \alpha_{1}, \omega_{2} - \alpha_{2} \right) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$
(14)

$$B_{\alpha_{1}\alpha_{2}}^{\omega_{1}\omega_{2}} = -\delta(\omega_{1} - \alpha_{1}, \omega_{2} - \alpha_{2})Q - \\ -\varepsilon(\omega_{1} - \alpha_{1}, \omega_{2} - \alpha_{2})\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$
(15)

$$Q = \begin{bmatrix} \omega_1 & \omega_1 \\ \omega_2 & \omega_2 \end{bmatrix} \begin{bmatrix} -\alpha_2 & \alpha_1 \\ -\alpha_2 & \alpha_1 \end{bmatrix}.$$
 (16)

 $\varepsilon(\omega_1, \omega_2)$ - преобразование Фурье от распределения диэлектрической проницаемости.

Система уравнений Максвелла в пространственно-частотном представлении имеет вид системы интегро-дифференциальных уравнений

$$\frac{i}{k}\frac{\partial f^{\alpha_{1}\omega_{2}s}}{\partial x_{3}} =$$

$$= \sum_{m} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} H^{\omega_{1}\omega_{2}s}_{\alpha_{1}\alpha_{2}m}(x_{3}) f^{\alpha_{1}\alpha_{2}m}(x_{3}) d\alpha_{1} d\alpha_{2}.$$
(17)

Для многих задач вместо базиса, состоящего из волн различной поляризации, распространяющихся в различных направлениях, удобно использовать следующий базис

$$|V_{\alpha_{1}\alpha_{2}}\rangle = \begin{pmatrix} \frac{\alpha_{1}\alpha_{3}}{\|W_{1}\|} & \frac{\alpha_{2}}{\sqrt{\varepsilon}\|W_{2}\|} & 0 & 0\\ \frac{\alpha_{2}\alpha_{3}}{\|W_{1}\|} & \frac{-\alpha_{1}}{\sqrt{\varepsilon}\|W_{2}\|} & 0 & 0\\ 0 & 0 & \frac{-\alpha_{2}\sqrt{\varepsilon}}{\|W_{3}\|} & \frac{-\alpha_{1}\alpha_{3}}{\|W_{4}\|}\\ 0 & 0 & \frac{\alpha_{1}\sqrt{\varepsilon}}{\|W_{3}\|} & \frac{-\alpha_{2}\alpha_{3}}{\|W_{4}\|} \end{pmatrix}.$$
(18)

где $||W_i||$, i = 1, 2, 3, 4 – нормировочные коэффициенты, обеспечивающие нормировку введенного базиса.

2. Решение эталонной задачи

Предварительно рассмотрим задачу дифракции света на эталонном ДОЭ. Модельный ДОЭ должен сочетать в себе функции расщепителя пучка (дифракционной решетки) и при этом обладать фокусирующими свойствами. Такая модель позволяет охватить достаточно широкий класс существующих ДОЭ.

Для модельного расчета можно выбрать ДОЭ, расположенный перпендикулярно оси x_3 в области $0 < x_3 < D$ (рис. 1).

Рис.1. Оптическая схема

Диэлектрическая проницаемость в области эталонного ДОЭ имеет вид

$$\varepsilon(x_1, x_2) = \sum_n g_n \exp(ikng(x_1, x_2)), \qquad (19)$$

где $\vec{x} = (x_1, x_2)$ – декартовые координаты в плоскости оптического элемента, D – толщина диэлектрического слоя, n - целое число, x_0 - точка на оптическом элементе в окрестности которой ищется поле. Функция $g(x_1, x_2)$ имеет смысл функции эйконала для геометрооптического фокусатора [16-18].

Пусть функция $g(x_1, x_2)$ является квадратичной формой

$$g(x_{1}, x_{2}) = g(\vec{x}_{0}) + (\nabla g(\vec{x}_{0})(\vec{x} - \vec{x}_{0})) + \frac{1}{2}(\vec{x} - \vec{x}_{0})^{T} M(\vec{x}_{0})(\vec{x} - \vec{x}_{0}),$$
(20)

а матрица *М* имеет вид:

$$M = \begin{bmatrix} a & c \\ c & b \end{bmatrix}.$$

Для того чтобы решить задачу необходимо найти решение внутри ДОЭ (внутри диэлектрического слоя) и в свободном пространстве, удовлетворяющее условию непрерывности на границах раздела ДОЭ и окружающей среды.

2.1. Решение в диэлектрическом слое

Для получения решения внутри диэлектрического слоя в окрестности точки $\vec{x}_0 = ((x_0)_1, (x_0)_2)$ введем новые координаты $\vec{y} = (y_1, y_2)$:

$$\begin{bmatrix} x_1 - (x_0)_1 \\ x_2 - (x_0)_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$
 (21)

В этих координатах функция $g(x_1, x_2)$ имеет вид:

$$g(y_1, y_2) = g^0(0, 0) + \gamma^T(\vec{y}) + \frac{1}{2}(\vec{y})^T M_1(\vec{y}), \quad (22)$$

где матрица M_1 имеет диагональный вид:

$$M_{1} = Z^{T}MZ = \begin{bmatrix} \beta_{1} & 0\\ 0 & \beta_{2} \end{bmatrix},$$

$$Z = \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$
(23)

Угол θ выбирается таким образом, чтобы матрица $M_1 = Z^T M Z$ была диагональной.

Запишем Фурье-образ диэлектрической проницаемости

$$\varepsilon(\omega_1, \omega_2) = \sum_m g_m \exp(ikmg(0, 0)) \times$$

$$\times D_{mm}(\omega_1 - m\gamma_1, \omega_2 - m\gamma_2),$$
(24)

$$\varepsilon^{-1}(\omega_{1},\omega_{2}) = \sum_{m} g_{m}^{-1} \exp(ikmg(0,0)) \times D_{mm}(\omega_{1} - m\gamma_{1},\omega_{2} - m\gamma_{2}), \qquad (25)$$

 γ_1 и γ_2 связаны с производными функции $g(x_1, x_2)$ в исходной системе координат следующим образом

$$\begin{bmatrix} \frac{\partial g(x_1, x_2)}{\partial x_1} \\ \frac{\partial g(x_1, x_2)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}.$$
 (26)

$$D_{m_{1}m_{2}}(\omega_{1},\omega_{2}) = \sqrt{\frac{ik}{2\pi m_{1}\beta_{1}}} \cdot \sqrt{\frac{ik}{2\pi m_{2}\beta_{2}}} \cdot \exp\left(-ik\left(\frac{(\omega_{1})^{2}}{2m_{1}\beta_{1}} + \frac{(\omega_{2})^{2}}{2m_{2}\beta_{2}}\right)\right).$$
(27)

Связь поля в координатном и пространственно-частотном представлении имеет вид, аналогичный (8):

$$|W(y_1, y_2)\rangle =$$

$$= \sum_{s} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{\alpha_1 \alpha_2 s}(x_3) |F_{\alpha_1 \alpha_2 s}\rangle \times$$

$$\times \exp(ik(\alpha_1 y_1 + \alpha_2 y_2)) d\alpha_1 d\alpha_2.$$
(28a)

Найдем матричные элементы оператора Гамильтона-Максвелла в пространственно-частотном представлении (13). Оператор Гамильтона-Максвелла для распределения диэлектрической проницаемости (24)-(25) имеет вид (12), где

$$G_{\alpha_{1}\alpha_{2}}^{\omega_{1}\omega_{2}} = \sum_{n_{1}} G_{n_{1}} \left(\omega_{1}, \omega_{2}, \alpha_{1}, \alpha_{2} \right) \times$$

$$\times D_{n_{1}n_{1}} \left(\omega_{1} - n_{1}\gamma_{1} - \alpha_{1}, \omega_{2} - n_{1}\gamma_{2} - \alpha_{2} \right),$$
(28)

$$G_{n_{1}}(\omega_{1},\omega_{2},\alpha_{1},\alpha_{2}) = \begin{bmatrix} 0 & A_{n_{1}}(\omega_{1},\omega_{2},\alpha_{1},\alpha_{2}) \\ B_{n_{1}}(\omega_{1},\omega_{2},\alpha_{1},\alpha_{2}) & 0 \end{bmatrix}.$$
 (29)

где

$$A_{n_{1}}(\omega_{1},\omega_{2},\alpha_{1},\alpha_{2}) = g_{n_{1}}^{-1} \exp\left(ikn_{1}g^{0}(0,0)\right) \times \\ \times \begin{bmatrix} \omega_{1} & \omega_{1} \\ \omega_{2} & \omega_{2} \end{bmatrix} \begin{bmatrix} -\alpha_{2} & \alpha_{1} \\ -\alpha_{2} & \alpha_{1} \end{bmatrix} - \delta_{n_{1}}^{0} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$
(30)
$$B_{n_{1}}(\omega_{1},\omega_{2},\alpha_{1},\alpha_{2}) = -\delta_{n_{1}}^{0} \begin{bmatrix} \omega_{1} & \omega_{1} \\ \omega_{2} & \omega_{2} \end{bmatrix} \begin{bmatrix} -\omega_{2} & \omega_{1} \\ -\omega_{2} & \omega_{1} \end{bmatrix} - \\ -g_{n_{1}} \exp\left(ikn_{1}g(0,0)\right) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$
(31)

Двумерные матрицы, входящие в (13), представляются в виде:

$$A_{\alpha_{1}\alpha_{2}}^{\omega_{1}\omega_{2}} = \sum_{n_{1}} A_{n_{1}} (\omega_{1}, \omega_{2}, \alpha_{1}, \alpha_{2}) \times$$

$$\times D_{n_{1}n_{1}} (\omega_{1} - n_{1}\gamma_{1} - \alpha_{1}, \omega_{2} - n_{1}\gamma_{2} - \alpha_{2}),$$

$$B_{\alpha,\alpha_{2}}^{\omega_{1}\omega_{2}} = \sum_{n} B_{n} (\omega_{1}, \omega_{2}, \alpha_{1}, \alpha_{2}) \times$$
(32)

$$\times D_{n_1n_1} \left(\omega_1 - n_1\gamma_1 - \alpha_1, \omega_2 - n_1\gamma_2 - \alpha_2 \right).$$
(33)

Запишем матричные элементы оператора Гамильтона-Максвелла в пространственно-частотном базисе (18)

$$H_{\alpha_{1}\alpha_{2}s}^{\omega_{1}\omega_{2}n} = \sum_{n_{1}} \left\langle V^{\omega_{1}\omega_{2}n} \left| G_{n_{1}} \left(\omega_{1}, \omega_{2}, \alpha_{1}, \alpha_{2} \right) \right| V_{\alpha_{1}\alpha_{2}s} \right\rangle \times \\ \times D_{n_{1}n_{1}} \left(\omega_{1} - n_{1}\gamma_{1} - \alpha_{1}, \omega_{2} - n_{1}\gamma_{2} - \alpha_{2} \right).$$

$$(34)$$

Решение системы уравнений Максвелла в пространственно-частотном представлении запишем в виде:

$$v^{\alpha_{1}\alpha_{2}l}(x_{3}) = \\ = \sum_{s_{1}s_{2}} v^{s_{1}s_{2}l}(x_{3}) D_{s_{1}s_{2}}(\alpha_{1} - s_{1}\gamma_{1} - \xi_{1}, \alpha_{2} - s_{2}\gamma_{2} - \xi_{2}),$$
⁽³⁵⁾

ξ₁,ξ₂ - произвольные постоянные, описывающие наклон падающей волны по отношению к локальной решетке.

Подставляем выражения в исходную систему интегро-дифференциальных уравнений Максвелла в пространственно-частотном представлении (17), получаем систему дифференциальных уравнений

$$\frac{i}{k} \sum_{m_{1}m_{2}} \frac{\partial v^{m_{1}m_{2}l}(x_{3})}{\partial x_{3}} D_{m_{1}m_{2}} (\omega_{1} - m_{1}\gamma_{1} - -\xi_{1}, \omega_{2} - m_{2}\gamma_{2} - \xi_{2}) = \\
= \sum_{s_{1}s_{2}} \sum_{n_{1}q} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \langle V^{\omega_{1}\omega_{2}l} | G_{n_{1}}(\omega_{1}, \omega_{2}, \alpha_{1}, \alpha_{2}) | V_{\alpha_{1}\alpha_{2}q} \rangle \times \quad (36) \\
\times v^{s_{1}s_{2}q}(x_{3}) D_{s_{1}s_{2}}(\alpha_{1} - s_{1}\gamma_{1} - \xi_{1}, \alpha_{2} - s_{2}\gamma_{2} - \xi_{2}) \times \\
\times D_{n_{1}n_{1}}(\omega_{1} - n_{1}\gamma_{1} - \alpha_{1}, \omega_{2} - n_{1}\gamma_{2} - \alpha_{2}) d\alpha_{1} d\alpha_{2}.$$

Вычислим интеграл в правой части (36) методом стационарной фазы [10-12].

Получим:

$$\frac{i}{k} \sum_{m_1 m_2} \frac{\partial v^{m_1 m_2 l} (x_3)}{\partial x_3} \times \\
\times D_{m_1 m_2} (\omega_1 - m_1 \gamma_1 - \xi_1, \omega_2 - m_2 \gamma_2 - \xi_2) = \\
= \sum_{s_1 s_2} \sum_{n_1 q} \left\langle V^{\omega_1 \omega_2 l} \left| G_{n_1} (\omega_1, \omega_2, \alpha_1^s, \alpha_2^s) \right| V_{\alpha_1^s \alpha_2^s q} \right\rangle \times \quad (37) \\
\times v^{s_1 s_2 q} (x_3) \times D_{s_1 + n_1 s_2 + n_2} (\omega_1 - (n_1 + s_1) \gamma_1 - -\xi_1, \omega_2 - (n_1 + s_2) \gamma_2 - \xi_2),$$

где стационарные точки

$$\alpha_1^s = \xi_1 + \frac{(\omega_1 - \xi_1)s_1}{n_1 + s_1},$$

$$\alpha_2^s = \xi_2 + \frac{(\omega_2 - \xi_2)s_2}{n_1 + s_2}.$$

Введем новые обозначения для индексов суммирования в правой части (37)

$$m_1 = n_1 + s_1, \quad m_2 = n_1 + s_2.$$

Тогда в этой новой индексации

$$\frac{i}{k} \sum_{m_{1}m_{2}} \frac{\partial v^{m_{1}m_{2}l}(x_{3})}{\partial x_{3}} \times \\
\times D_{m_{1}m_{2}}(\omega_{1} - m_{1}\gamma_{1} - \xi_{1}, \omega_{2} - m_{2}\gamma_{2} - \xi_{2}) = \\
= \sum_{m_{1}m_{2}} \sum_{n_{1}q} \left\langle V^{\omega_{1}\omega_{2}l} \middle| G_{n_{1}}(\omega_{1}, \omega_{2}, \alpha_{1}^{s}, \alpha_{2}^{s}) \middle| V_{\alpha_{1}^{s}\alpha_{2}^{s}q} \right\rangle \times \qquad (38) \\
\times v^{m_{1}-n_{1}m_{2}-n_{1}q}(x_{3}) \times \\
\times D_{m_{1}m_{2}}(\omega_{1} - m_{1}\gamma_{1} - \xi_{1}, \omega_{2} - m_{2}\gamma_{2} - \xi_{2}),$$

и стационарные точки

$$\alpha_1^s = \xi_1 + \frac{(\omega_1 - \xi_1)(m_1 - n_1)}{m_1},$$

$$\alpha_2^s = \xi_2 + \frac{(\omega_2 - \xi_2)(m_2 - n_1)}{m_2}$$

Основной вклад в результат вносит функция

$$D_{m_1m_2}\left(\omega_1-m_1\gamma_1-\xi_1,\omega_2-m_2\gamma_2-\xi_2\right)$$

в окрестности точек

$$\omega_1 = m_1 \gamma_1 + \xi_1, \quad \omega_2 = m_2 \gamma_2 + \xi_2.$$

Заменим в выражении для стационарных точек ω_1, ω_2 этими значениями.

Далее будем использовать стационарные точки

$$\alpha_{1}^{s} = \xi_{1} + \gamma_{1} (m_{1} - n_{1}),$$

$$\alpha_{2}^{s} = \xi_{2} + \gamma_{2} (m_{2} - n_{1}).$$

Эта замена при малых длинах волн не влияет на точность вычисления интеграла методом стационарной фазы.

Уравнение (38) является функциональным уравнением, так как в него входит зависимость от ω_1, ω_2 .

Перейдем от дифференциально-функционального уравнения к системе обыкновенных дифференциальных уравнений. Для этого выберем систему линейно-независимых функций $K_{mn}(\omega_1,\omega_2)$. Умножим (38) на каждую из базисных функций и в результате получим систему обыкновенных дифференциальных уравнений для коэффициентов $v^{m_1m_2l}$.

Бивекторное поле внутри диэлектрического слоя имеет вид:

$$\begin{split} \left| W_{2}^{\alpha_{1}\alpha_{2}}(x_{3}) \right\rangle &= v^{\alpha_{1}\alpha_{2}1}(x_{3}) \left| V_{\alpha_{1}\alpha_{2}1} \right\rangle + \\ &+ v^{\alpha_{1}\alpha_{2}2}(x_{3}) \left| V_{\alpha_{1}\alpha_{2}2} \right\rangle + \\ &+ v^{\alpha_{1}\alpha_{2}3}(x_{3}) \left| V_{\alpha_{1}\alpha_{2}3} \right\rangle + \\ &+ v^{\alpha_{1}\alpha_{2}4}(x_{3}) \left| V_{\alpha_{1}\alpha_{2}4} \right\rangle, \end{split}$$
(39)

где $v^{\alpha_1 \alpha_2 i}(x_3)$ описывается выражением (35).

<u>2.2. Распространение в свободном</u> <u>пространстве</u>

В пространстве с постоянной диэлектрической проницаемостью в плоскости $x_3 = 0$ решение системы уравнений Максвелла в пространственно-частотном *F*-представлении запишем в виде:

$$f_{i}^{\alpha_{1}\alpha_{2}l}(x_{3}) =$$

$$= \sum_{s_{1}s_{2}} f_{i}^{s_{1}s_{2}l}(0) D_{s_{1}s_{2}}(\alpha_{1} - s_{1}\gamma_{1} - (40))$$

$$-\xi_{1}, \alpha_{2} - s_{2}\gamma_{2} - \xi_{2}) \exp(\pm ik\alpha_{3}x_{3}),$$

$$\alpha_{3} = \sqrt{1 - \alpha_{1}^{2} - \alpha_{2}^{2}}.$$

11

Знак «+» берется для l = 1, 2; знак «-» берется, если l = 3, 4.

Введем следующие обозначения:

- область 1 область, в которой распространяется падающая и отраженная волны (обозначим *I* падающая волна, соответствующая ТМ-поляризации, и *R* – падающая волна, соответствующая ТЕ-поляризации);
- $f_1^{\alpha_1 \alpha_2 1} = I^{\alpha_1 \alpha_2 h}$ коэффициент, описывающий падающую волну, соответствующую ТМ-поляризации. Соответствующий набор коэффициентов $f_1^{s_1 s_2 1} = I^{s_1 s_2 e}$;
- $f_1^{\alpha_1 \alpha_2 2} = I^{\alpha_1 \alpha_2 e}$ коэффициент, описывающий падающую волну, соответствующую ТЕ-поляризации. Соответствующий набор коэффициентов $f_1^{s_1 s_2 2} = I^{s_1 s_2 h}$;
- $f_1^{\alpha_1 \alpha_2 3} = R^{\alpha_1 \alpha_2 h}$ коэффициент, описывающий отраженную волну, соответствующую ТМ-поляризации. Соответствующий набор коэффициентов $f_1^{s_1 s_2 3} = R^{s_1 s_2 e}$;
- $f_1^{\alpha_1 \alpha_2 4} = R^{\alpha_1 \alpha_2 e}$ коэффициент, описывающий отраженную волну, соответствующую ТЕ-поляризации. Соответствующий набор коэффициентов $f_1^{s_1 s_2 4} = R^{s_1 s_2 h}$;
- область 2 область, содержащая диэлектрический слой с плоскими границами;
- область 3 область, в которой распространяется прошедшая волна;
- $f_3^{\alpha_1 \alpha_2 1} = T^{\alpha_1 \alpha_2 e}$ коэффициент, описывающий прошедшую волну, соответствующую ТМ-поляризации. Соответствующий набор коэффициентов $f_3^{s_1 s_2 1} = T^{s_1 s_2 e}$;
- $f_3^{\alpha_1 \alpha_2 2} = T_3^{\alpha_1 \alpha_2 e}$ коэффициент, описывающий прошедшую волну, соответствующую ТЕ-поляризации. Соответствующий набор коэффициентов $f_3^{s_1 s_2 2} = T^{s_1 s_2 h}$.

Бивекторное поле в первой области имеет вид:

$$\begin{split} \left| W_{1}^{\alpha_{1}\alpha_{2}}\left(x_{3}\right) \right\rangle &= I^{\alpha_{1}\alpha_{2}h}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}1} \right\rangle + \\ &+ I^{\alpha_{1}\alpha_{2}e}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}2} \right\rangle + \\ &+ R^{\alpha_{1}\alpha_{2}h}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}3} \right\rangle + \\ &+ R^{\alpha_{1}\alpha_{2}e}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}4} \right\rangle. \end{split}$$

$$(41)$$

Бивекторное поле в третьей области имеет вид:

$$\left| W_{3}^{\alpha_{1}\alpha_{2}}\left(x_{3}\right) \right\rangle = T^{\alpha_{1}\alpha_{2}h}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}1} \right\rangle + + T^{\alpha_{1}\alpha_{2}e}\left(x_{3}\right) \left| F_{\alpha_{1}\alpha_{2}2} \right\rangle.$$

$$(42)$$

Используя (40) и введенные выше обозначения для коэффициентов, получаем выражение для поля в пространственно-частотном представлении.

2.3. Сшивка решений

В предыдущих пунктах были записаны решения системы уравнений Максвелла в пространственночастотном представлении в области диэлектрического слоя и в области свободного пространства в виде линейной комбинации с неизвестными коэффициентами. В настоящем пункте рассмотрим решение задачи дифракции плоской волны на диэлектрическом слое с диэлектрической проницаемостью є, представленной в форме (19).

Условие сшивки на первой границе – равенство бивекторных полей на границе раздела

$$W_{1}^{\alpha_{1}\alpha_{2}}(0) = W_{2}^{\alpha_{1}\alpha_{2}}(0).$$
(43)

Условие сшивки на второй границе - аналогично (43):

$$W_2^{\alpha_1\alpha_2}\left(D\right) = W_3^{\alpha_1\alpha_2}\left(D\right),\tag{44}$$

где *D* – толщина диэлектрического слоя.

Эти условия служат для определения коэффициентов $T^{\alpha_1\alpha_2 e}$, $T^{\alpha_1\alpha_2 h}$, $R^{\alpha_1\alpha_2 e}$, $R^{\alpha_1\alpha_2 h}$. Таким образом, сшивка приводит к системе линейных алгебраических уравнений.

3. Коротковолновые асимптотики

<u>3.1. Поле внутри слоя модуляции ДОЭ</u>

Рассмотрим теперь случай, когда длина волны освещающего пучка стремится к нулю (коротковолновая асимптотика). В этом случае

$$D_{m_1m_2}\left(\omega_1,\omega_2\right) = \delta\left(\omega_1,\omega_2\right). \tag{45}$$

Используя линейную независимость б-функций, получаем следующую систему линейных дифференциальных уравнений:

$$\frac{i}{k} \frac{\partial v^{m_1 m_2 t}(x_3)}{\partial x_3} = \sum_{n_1 q} \left\langle V^{\omega_1^0 \omega_2^{0t}} \middle| G_{n_1} \left(\omega_1^0 \omega_2^0, \alpha_1^{st}, \alpha_2^{st} \right) \middle| V_{\alpha_1^{st} \alpha_2^{st} q} \right\rangle \cdot (46)$$
$$\cdot v^{m_1 - n_1 m_2 - n_1 q}(x_3),$$

где

$$\alpha_1^{st} = \xi_1 + \gamma_1 (m_1 - n_1), \quad \alpha_2^{st} = \xi_2 + \gamma_2 (m_2 - n_1) \omega_1^0 = m_1 \gamma_1 + \xi_1, \quad \omega_2^0 = m_2 \gamma_2 + \xi_2.$$

Запишем систему уравнений только для подмножества индексов $m_1 = m_2$.

$$\frac{i}{k} \frac{\partial v^{m_1 m_1 l} \left(x_3\right)}{\partial x_3} = \sum_{n_1 q} \left\langle V^{\omega_1^0 \omega_2^{0l}} \middle| G_{n_1} \left(\omega_1^0 \omega_2^0, \alpha_1^{st}, \alpha_2^{st}\right) \middle| V_{\alpha_1^{st} \alpha_2^{st} q} \right\rangle \cdot$$

$$\cdot v^{m_1 - n_1 m_1 - n_1 q} \left(x_3\right),$$
(47)

где

$$\alpha_{1}^{st} = \xi_{1} + \gamma_{1} (m_{1} - n_{1}), \ \alpha_{2}^{st} = \xi_{2} + \gamma_{2} (m_{1} - n_{1}), \\ \omega_{1}^{0} = m_{1} \gamma_{1} + \xi_{1}, \ \omega_{2}^{0} = m_{1} \gamma_{2} + \xi_{2}.$$

Далее введем новые индексы суммирования $p_1 = m_1 - n_1$:

$$\frac{i}{k} \frac{\partial v^{m_l}(x_3)}{\partial x_3} = \sum_{p_1q} \left\langle V^{\omega_1^0 \omega_2^{0_l}} \middle| G_{m_1 - p_1} \left(\omega_1^0 \omega_2^0, \alpha_1^{st}, \alpha_2^{st} \right) \middle| V_{\alpha_1^{st} \alpha_2^{st} q} \right\rangle \cdot v^{p_l q}(x_3),$$
(48)

где

$$\begin{split} &\alpha_1^{st} = \xi_1 + \gamma_1 p_1, \quad \alpha_2^{st} = \xi_2 + \gamma_2 p_1, \\ &\omega_1^0 = m_1 \gamma_1 + \xi_1, \quad \omega_2^0 = m_1 \gamma_2 + \xi_2. \end{split}$$

Обозначим

 $\gamma_1 = \gamma \cos \varphi, \gamma_2 = \gamma \sin \varphi.$

$$\begin{bmatrix} \xi_{1} + \gamma \cos \varphi p_{1} \\ \xi_{2} + \gamma \sin \varphi p_{1} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \xi_{1} + \gamma p_{1} \\ \xi_{2} \end{bmatrix},$$
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \xi_{1} + \gamma \cos \varphi m_{1} & \xi_{1} + \gamma \cos \varphi m_{1} \\ \xi_{2} + \gamma \sin \varphi p_{1} & \xi_{2} + \gamma \sin \varphi p_{1} \end{bmatrix}.$$
$$\cdot \begin{bmatrix} -\xi_{2} - \gamma \sin \varphi p_{1} & \xi_{1} + \gamma \cos \varphi p_{1} \\ -\xi_{2} - \gamma \sin \varphi p_{1} & \xi_{2} + \gamma \cos \varphi p_{1} \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \\= \begin{bmatrix} \tilde{\xi}_{1} + \gamma m_{1} & \tilde{\xi}_{1} + \gamma p_{1} \\ \tilde{\xi}_{2} & \tilde{\xi}_{2} \end{bmatrix} \cdot \begin{bmatrix} -\tilde{\xi}_{2} & \tilde{\xi}_{1} + \gamma p_{1} \\ -\tilde{\xi}_{2} & \tilde{\xi}_{1} + \gamma p_{1} \end{bmatrix}.$$

Используя эти тождества, можно доказать соотношение

$$\left\langle V^{\omega_{1}^{0}\omega_{2}^{0}} \middle| G_{m_{1}-p_{1}}\left(\omega_{1}^{0},\omega_{2}^{0},\alpha_{1}^{st},\alpha_{2}^{st}\right) \middle| V_{\alpha_{1}^{st}\alpha_{2}^{st}q} \right\rangle = = \left\langle V^{\tilde{\omega}_{1}^{0}\tilde{\omega}_{2}^{0}} \middle| G_{m_{1}-p_{1}}\left(\tilde{\omega}_{1},\tilde{\omega}_{2},\tilde{\alpha}_{1},\tilde{\alpha}_{2}\right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}q} \right\rangle,$$

$$\tilde{\alpha}_{1} = \tilde{\xi}_{1} + \gamma_{1}p_{1}, \quad \tilde{\alpha}_{2} = \tilde{\xi}_{2},$$

$$\tilde{\omega}_{1} = m_{1}\gamma_{1} + \tilde{\xi}_{1}, \quad \tilde{\omega}_{2} = \tilde{\xi}_{2}.$$

$$(49)$$

Следует отметить, что матричные элементы в правой части (49) соответствуют задаче конической дифракции [19] на одномерной периодической решетке.

Для дальнейшего анализа запишем уравнение в виде:

$$\frac{i}{k}\frac{\partial v^{m_l}}{\partial x_3} = H_{p q}^{m_l} v^{p_l q} \left(x_3\right),\tag{50}$$

где

$$\begin{aligned} H_{p_{1}q}^{m_{1}l} &= \\ &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}l} \left| G_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \right| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}q} \right\rangle. \end{aligned}$$
 (51)

Структура оператора Гамильтона-Максвелла такова, что отличны от нуля только следующие восемь матричных элементов

$$\begin{split} H_{p_{1}3}^{m_{1}1} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}1} \middle| A_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}3} \right\rangle, \\ H_{p_{1}4}^{m_{1}1} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}1} \middle| A_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}4} \right\rangle, \\ H_{p_{1}3}^{m_{1}2} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}2} \middle| A_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}4} \right\rangle, \\ H_{p_{1}4}^{m_{1}2} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}2} \middle| A_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}4} \right\rangle, \end{split}$$
(52)
$$\begin{aligned} H_{p_{1}1}^{m_{1}3} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}3} \middle| B_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}2} \right\rangle, \\ H_{p_{1}2}^{m_{1}4} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}4} \middle| B_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}1} \right\rangle, \\ H_{p_{1}2}^{m_{1}4} &= \left\langle V^{\tilde{\omega}_{1}\tilde{\omega}_{2}4} \middle| B_{m_{1}-p_{1}} \left(\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2} \right) \middle| V_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}2} \right\rangle. \end{aligned}$$

В последних выражениях использовались ненулевые компоненты соответствующих четырехмерных векторов.

Система распадается на две системы уравнений:

$$\frac{i}{k} \frac{\partial v^{m_{l}l}(x_{3})}{\partial x_{3}} =$$

$$= \sum_{p_{1}} \sum_{q=3,4} H^{m_{l}l}_{p_{1q}} v^{p_{1q}}(x_{3}) = \sum_{p_{1}} \sum_{q=3,4} A^{m_{l}l}_{p_{1q}} v^{p_{1q}}(x_{3}),$$

$$l=1, 2,$$

$$\frac{i}{k} \frac{\partial v^{m_{l}l}(x_{3})}{\partial x_{3}} =$$
(54)

$$=\sum_{p_{1}}\sum_{q=1,2}^{5}H_{p_{1}q}^{m_{1}l}v^{p_{1}q}\left(x_{3}\right)=\sum_{p_{1}}\sum_{q=1,2}B_{p_{1}q}^{m_{1}l}v^{p_{1}q}\left(x_{3}\right),$$

$$l=3, 4.$$

Полученные системы можно свести к системам уравнений второго порядка. При этом вдвое сокращается размерность системы уравнений:

$$-\frac{1}{k^{2}}\frac{\partial^{2}v^{m_{l}l}(x_{3})}{\partial(x_{3})^{2}} = M_{ns}^{ml}v^{ns}(x_{3}),$$

$$v^{s_{l}l}(x_{3}) = \sum_{mn} E_{mn}^{s_{l}l}\left(a^{+mn}\exp(ik\mu_{mn}x_{3}) + a^{-nm}\exp(-ik\mu_{mn}(x_{3}-D))\right),$$

$$\sum_{nl}M_{nl}^{sq}E_{pn}^{nl} = \mu_{pn}^{2}E_{pn}^{sq},$$

$$M_{ns}^{ml} = \sum_{p}\sum_{q=3,4}A_{pq}^{ml}B_{ns}^{pq},$$

$$l=1, 2,$$
(55)

$$-\frac{1}{k^{2}} \frac{\partial^{2} v^{m_{l}l}(x_{3})}{\partial(x_{3})^{2}} = N_{ns}^{ml} v^{ns}(x_{3}),$$

$$v^{s_{l}l}(x_{3}) = \sum_{mn} P_{mn}^{s_{l}l} \left(a^{+mn} \exp(ik\mu_{mn}x_{3}) + a^{-mn} \exp(-ik\mu_{mn}(x_{3} - D))\right),$$

$$\sum_{pl} N_{pl}^{sq} P_{mn}^{pl} = \mu_{mn}^{2} P_{mn}^{sq},$$

$$N_{ns}^{ml} = \sum_{p} \sum_{q=1,2} B_{pq}^{ml} A_{ns}^{pq},$$
(56)

l=3, 4,

D - толщина диэлектрического слоя.

В случае, когда плоская волна падает перпендикулярно к плоскости дифракционного оптического элемента, или радиально-симметричная волна падает на радиально-симметричный оптический элемент, имеем частный случай $\tilde{\xi}_2 = 0$. В этом случае уравнения для коэффициентов, описывающих распространение поля внутри слоя, имеют вид:

$$\frac{i}{k}\frac{\partial v^{m_1}(x_3)}{\partial x_3} = A_{p_13}^{m_1} v^{p_13}(x_3),$$
(57)

$$\frac{i}{k}\frac{\partial v^{m_1 2}(x_3)}{\partial z} = A_{p_1 4}^{m_1 2} v^{p_1 4}(x_3),$$
(58)

$$\frac{i}{k}\frac{\partial v^{m_13}(x_3)}{\partial z} = A_{p_11}^{m_13}v^{p_11}(x_3),$$
(59)

$$\frac{i}{k}\frac{\partial v^{m_14}(x_3)}{\partial z} = A_{p_12}^{m_14} v^{p_12}(x_3).$$
(60)

При стремлении длины волны освещающего пучка к нулю выражение для поля внутри слоя имеет вид:

$$v^{\alpha_{1}\alpha_{2}l}(x_{3}) = \sum_{s_{1}} v^{s_{1}l}(x_{3}) \delta(\alpha_{1} - s_{1}\gamma_{1} - \xi_{1}, \alpha_{2} - s_{1}\gamma_{2} - \xi_{2}).$$
(61)

В этом случае каждая система уравнений распадается на две. Каждая из полученных систем имеет меньшую размерность. Эти уравнения могут быть также сведены к системам уравнения второго порядка. Факторизация приводит к тому, что в данной системе могут распространяться волны, для которых направление электрического и магнитного полей совпадает с направлением локальной решетки, или их суперпозиция.

<u>3.2. Коротковолновые асимптотики</u> <u>для прошедшего и отраженного полей</u> <u>в свободном пространстве</u>

При стремлении к нулю длины волны освещающего пучка выражение для отраженного поля

$$R^{\alpha_{1}\alpha_{2}e}(x_{3}) =$$

$$= \sum_{s_{1}} R^{se} \delta(\alpha_{1} - s\gamma_{1} - \xi_{1}, \alpha_{2} - s\gamma_{2} - \xi_{2}) \times$$

$$\times \exp(-ik\alpha_{3}x_{3}), \qquad (62)$$

$$= \sum_{s_{1}} R^{sh} \delta(\alpha_{1} - s\gamma_{1} - \xi_{1}, \alpha_{2} - s\gamma_{2} - \xi_{2}) \times$$

$$\times \exp(-ik\alpha_{3}x_{3}).$$
Для прошедшего поля
$$T^{\alpha_{1}\alpha_{2}e}(x_{3}) = \sum_{s_{1}} T^{s_{1}e} \delta(\alpha_{1} - s_{1}\gamma_{1} - -\xi_{1}, \alpha_{2} - s_{1}\gamma_{2} - \xi_{2}) \exp(ik\alpha_{3}(x_{3} - D)),$$

$$T^{\alpha_{1}\alpha_{2}h}(x_{3}) = \sum_{s_{1}} T^{s_{1}h} \delta(\alpha_{1} - s_{1}\gamma_{1} - -\xi_{1}, \alpha_{2} - s_{1}\gamma_{2} - \xi_{2}) \exp(ik\alpha_{3}(x_{3} - D)).$$

<u>3.3. Условия сшивки полей</u>

Условие непрерывности электрического и магнитного полей приводит к формулам для расчета локальных коэффициентов отражения и пропускания:

$$v^{s_{i}k}(0) = I^{s_{i}h}(0) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}1} \rangle +$$

$$+I^{s_{i}e}(0) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}2} \rangle +$$

$$+R^{s_{i}h}(0) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}3} \rangle +$$

$$+R^{s_{i}e}(0) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}4} \rangle,$$

$$v^{s_{i}k}(D) = T^{s_{i}k}(D) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}1} \rangle +$$

$$+T^{s_{i}k}(D) \langle V^{\alpha_{1}\alpha_{2}k} || F_{\alpha_{1}\alpha_{2}1} \rangle,$$
(63)

где $\alpha_1 = s_1 \gamma + \xi_1$, $\alpha_2 = s_1 \gamma + \xi_2$.

Нетрудно показать, что преобразование поворота не изменяет скалярное произведение

$$\left\langle V^{\alpha_{1}\alpha_{2}k} \left| \left| F_{\alpha_{1}\alpha_{2}s} \right\rangle \right\rangle = \left\langle V^{\tilde{\alpha}_{1}\tilde{\alpha}_{2}k} \left| \left| F_{\tilde{\alpha}_{1}\tilde{\alpha}_{2}s} \right\rangle \right\rangle$$

где $\tilde{\alpha}_1 = s_1 \gamma + \tilde{\xi}_1$, $\tilde{\alpha}_2 = s_1 \gamma + \tilde{\xi}_2$.

Следует отметить, что полученная система линейных уравнений совпадает с системой уравнений для определения коэффициентов дифракционной решетки в случае конической дифракции [2, 19].

3.4. Поле на выходе оптического элемента
в случае
$$\tilde{\xi}_2 = 0$$

В случае, когда плоская волна падает перпендикулярно к плоскости дифракционного оптического элемента, или радиально-симметричная волна падает на радиально-симметричный оптический элемент, имеем частный случай $\tilde{\xi}_2 = 0$. Учитывая формулы (28а), поле на выходе ДОЭ в пространственном представлении в переменных y_1, y_2 имеет вид:

$$|W\rangle = = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(T^{\alpha_1 \alpha_2 e} \left(x_3 \right) \middle| F_{\alpha_1 \alpha_2 1} \right) + T^{\alpha_1 \alpha_2 h} \left(x_3 \right) \middle| F_{\alpha_1 \alpha_2 2} \right) \right) \times (64) \times \exp \left(ik \left(\alpha_1 y_1 + \alpha_2 y_2 \right) x_3 \right) d\alpha_1 d\alpha_2,$$

где $|F_{\alpha_1 \alpha_2 m}\rangle$ – базисные вектора *F*-представления.

Коэффициенты $T^{s_l e}$, $T^{s_l h}$, входящие в выражения (62), для случая $\tilde{\xi}_2 = 0$ имеют вид:

 $T^{s_1e} = a(0,0)T_h^{s_1}(0,0); \ T^{s_1h} = b(0,0)T_e^{s_1}(0,0).$

Коэффициент a(0,0) описывает вклад падающей волны в случае, когда направление электрического поля совпадает с направлением штрихов локальной дифракционной решетки.

Коэффициент b(0,0) описывает вклад падающей волны в случае, когда направление магнитного поля совпадает с направлением штрихов локальной дифракционной решетки. $T_h^{s_1}(0,0), T_e^{s_1}(0,0)$ - коэффициенты дифракции в s_1 порядке для случая, когда направление магнитного и электрического (соответственно) поля параллельно штрихам дифракционной решетки.

Вычисляем интеграл в выражении (64), получаем поле в пространственном представлении в переменных y_1, y_2

$$|W(\vec{y})\rangle = \sum_{n_{1}} a(0,0) T_{h}^{n_{1}}(0,0) |F_{\xi_{1}+\gamma_{1}n_{1}-\gamma_{2}n_{1}+\xi_{2}1}\rangle \times$$

$$\times \exp(ikn_{1}g(0,0)) \exp(ik\vec{\gamma}\vec{y}n_{1}) +$$

$$+ \sum_{n_{1}} b(0,0) T_{e}^{n_{1}}(0,0) |F_{\xi_{1}+\gamma_{1}n_{1}-\gamma_{2}n_{1}+\xi_{2}2}\rangle \times$$

$$\times \exp(ikn_{1}g(0,0)) \exp(ik\vec{\gamma}\vec{y}n_{1}).$$
(65)

Теперь необходимо перейти от координат y_1, y_2 к координатам x_1, x_2 . Этот переход осуществляется с помощью преобразования вращения. Поле в точке \vec{x}_0

$$\begin{split} \left| W(\vec{x}_{0}) \right\rangle &= \\ &= \sum_{n_{1}} a(0,0) T_{h}^{n_{1}}(0,0) ZZ \left| F_{\xi_{1}+\gamma_{1}n_{1}-\gamma_{2}n_{1}+\xi_{2}1} \right\rangle \times \\ &\times \exp(ikn_{1}g(0,0)) + \\ &+ \sum_{n_{1}} b(0,0) T_{e}^{n_{1}}(0,0) ZZ \left| F_{\xi_{1}+\gamma_{1}n_{1}-\gamma_{2}n_{1}+\xi_{2}2} \right\rangle \times \\ &\times \exp(ikn_{1}g(0,0)). \end{split}$$
(66)

Матрица ZZ имеет вид

$$ZZ = \begin{bmatrix} Z & 0 \\ 0 & Z \end{bmatrix}.$$

Напомним, что матрица Z имеет вид (23).

Для получения окончательного результата определим *a* и *b*, которые описывают падающую волну.

Бивектор электромагнитного поля падающей волны в плоскости $x_3 = 0$ в координатах (y_1, y_2) , когда исходная электромагнитная волна падает перпендикулярно модулированной дифракционной решетке и вектор поляризации направлен вдоль оси x_2 , имеет вид:

$$W(0,0) = \left(a\left(\vec{x}_{0}\right) \middle| F_{1} \right\rangle + b\left(\vec{x}_{0}\right) \middle| F_{2} \right), \tag{67}$$

где

$$|F_{1}\rangle = \begin{pmatrix} \alpha_{3} \cos \varphi \|W_{e}\|^{-1} \\ \alpha_{3} \sin \varphi \|W_{e}\|^{-1} \\ -\sin \varphi \sqrt{\varepsilon} \|W_{e}\|^{-1} \\ \cos \varphi \sqrt{\varepsilon} \|W_{e}\|^{-1} \end{pmatrix},$$

$$|F_{2}\rangle = \begin{pmatrix} \sin \varphi (\|W_{h}\|\sqrt{\varepsilon})^{-1} \\ -\cos \varphi (\|W_{h}\|\sqrt{\varepsilon})^{-1} \\ \alpha_{3} \cos \varphi \|W_{h}\|^{-1} \\ \alpha_{3} \sin \varphi \|W_{h}\|^{-1} \end{pmatrix},$$

$$(68)$$

$$\varphi = \operatorname{arctg} \frac{\gamma_{2}}{\gamma_{1}}.$$

Базисные вектора выбраны таким образом, чтобы электрическое поле в первом базисном бивекторе и магнитное поле во втором базисном бивекторе были направлены вдоль штрихов локальной дифракционной решетки.

Поле (67) в координатах (x_1, x_2) описывается выражением

$$W\left(\vec{x}_{0}\right) = ZZ\left(a\left(\vec{x}_{0}\right)|F_{1}\rangle + b\left(\vec{x}_{0}\right)|F_{2}\rangle\right),\tag{69}$$

$$ZZ |F_1\rangle = \begin{pmatrix} \alpha_3 \cos \omega \|W_e\|^{-1} \\ \alpha_3 \sin \omega \|W_e\|^{-1} \\ -\sin \omega \sqrt{\varepsilon} \|W_e\|^{-1} \\ \cos \omega \sqrt{\varepsilon} \|W_e\|^{-1} \end{pmatrix},$$

$$ZZ |F_2\rangle = \begin{pmatrix} \sin \omega (\|W_h\|\sqrt{\varepsilon})^{-1} \\ -\cos \omega (\|W_h\|\sqrt{\varepsilon})^{-1} \\ -\cos \omega (\|W_h\|\sqrt{\varepsilon})^{-1} \\ \alpha_3 \cos \omega \|W_h\|^{-1} \\ \alpha_3 \sin \omega \|W_h\|^{-1} \end{pmatrix},$$
(70)
$$\omega = \omega + \theta.$$

2007

Бивектор, описывающий подающую волну в случае, когда она нормально падает на элемент, имеет вид:

$$W = \begin{vmatrix} 0\\1\\-\sqrt{\varepsilon}\\0 \end{vmatrix}.$$
 (71)

Для определения *a* и *b* необходимо решить систему линейных алгебраических уравнений

$$\begin{bmatrix} 0\\1\\-\sqrt{\varepsilon}\\0 \end{bmatrix} = a \begin{bmatrix} -\cos \omega\\-\sin \omega\\\sin \omega \sqrt{\varepsilon}\\-\cos \omega \sqrt{\varepsilon} \end{bmatrix} + b \begin{bmatrix} -\sin \omega\\\cos \omega\\-\cos \omega\\-\cos \omega \sqrt{\varepsilon}\\-\sin \omega \sqrt{\varepsilon} \end{bmatrix}$$
(72)

В этом случае

$$a = -\sqrt{2}\sin(\varphi + \theta), \ b = \sqrt{2}\cos(\varphi + \theta)$$

и окончательное выражение для электромагнитного поля на выходе модулированной дифракционной решетки имеет вид:

$$\begin{aligned} \left| W\left(\vec{x}_{0}\right) \right\rangle &= \\ &= \sqrt{2} \sum_{n_{1}} ZZ \left(-\sin\left(\phi + \theta\right) T_{h}^{n_{1}}\left(\vec{x}_{0}\right) \right| F_{\gamma_{1}n_{1},\gamma_{2}n_{1}}, 1 \right\rangle + \\ &+ \cos\left(\phi + \theta\right) T_{e}^{n_{1}}\left(\vec{x}_{0}\right) \left| F_{\gamma_{1}n_{1},\gamma_{2}n_{1},2} \right\rangle \right) \exp\left(ikn_{1}g\left(\vec{x}_{0}\right)\right), \end{aligned}$$
(73)

где $T_e^{n_1} = T_e^{n_1} (\vec{x}_0), T_h^{n_1} = T_h^{n_1} (\vec{x}_0),$ – коэффициенты дифракции на локальной решетке для *E*- и *H*-поляризации, соответственно. В случае, когда вектор поляризации направлен вдоль оси $x_{1:}$

$$\begin{bmatrix} 1\\0\\0\\\sqrt{\varepsilon} \end{bmatrix} = a \begin{bmatrix} -\cos \omega\\-\sin \omega\\\sin \omega\sqrt{\varepsilon}\\-\cos \omega\sqrt{\varepsilon} \end{bmatrix} + b \begin{bmatrix} -\sin \omega\\\cos \omega\\-\cos \omega\\-\cos \omega\sqrt{\varepsilon}\\-\sin \omega\sqrt{\varepsilon} \end{bmatrix},$$
(74)

$$a = -\sqrt{2}\cos(\varphi + \theta), \ b = -\sqrt{2}\sin(\varphi + \theta), \tag{75}$$

и выражение для поля принимает вид:

$$|W(\vec{x}_{0})\rangle = = -\sqrt{2}\sum_{n_{1}} ZZ \Big(\cos\left(\varphi + \theta\right) T_{h}^{n_{1}}\left(\vec{x}_{0}\right) |F_{\gamma_{1}n_{1},\gamma_{2}n_{1}},1\rangle + (76) + \sin\left(\varphi + \theta\right) T_{e}^{n_{1}}\left(\vec{x}_{0}\right) |F_{\gamma_{1}n_{1},\gamma_{2}n_{1},2}\rangle \Big) \exp\left(ikn_{1}g\left(\vec{x}_{0}\right)\right).$$

4. Асимптотики для псевдопериодических структур в рамках электромагнитной теории

В данном пункте рассмотрим применение вышеизложенных методов для расчета поля в случае дифракции волны на ДОЭ, которые обладают зонной структурой. В предыдущем разделе мы рассматривали дифракцию на модельном ДОЭ. Рассмотрим теперь диэлектрический слой с диэлектрической проницаемостью, которая описывается выражением (19). Случай, когда функция $g(x_1, x_2)$ является линейной, будет соответствовать чисто периодической структуре (дифракционной решетке). В случае, когда функция $g(x_1, x_2)$ не является линейной, получаем дифракционную структуру с изменяющимся периодом.

Для того чтобы воспользоваться результатами предыдущего раздела, сделаем предположение о том, что поле в данной точке зависит от распределения диэлектрической проницаемости только в окрестности данной точки. Это предположение основано на принципе локализации, который рассмотрен выше. Далее разложим функцию $g(x_1, x_2)$ в окрестности точки \vec{x}_0 в ряд Тейлора с точностью до членов второго порядка.

Полученное выражение по форме совпадает с выражением для поля на выходе дифракционного оптического элемента, полученного в рамках метода нелинейного предыскажения фазы, рассмотренного в работах [16, 17]. Оно также объясняет возможность использования приближения тонкого оптического элемента. Отличие состоит в том, что коэффициенты $T_e^{n_1} = T_e^{n_1}(\vec{x}_0)$ и $T_h^{n_1} = T_h^{n_1}(\vec{x}_0)$ имеют другой физический смысл. Напомним, что в методе предыскажения коэффициент $T_e^{n_1} = T_e^{n_1}(\vec{x}_0) = T_h^{n_1} = T_h^{n_1}(\vec{x}_0)$ совпадал с коэффициентом разложения в ряд Фурье функции предыскажения. В нашем случае он определяется согласно методу, изложенному в предыдущем разделе настоящей работы.

5. Расчет поля фокусатора в кольцо

Рассмотрим поле от фокусатора в кольцо. В этом случае функция g(r) имеет вид:

$$g(r) = \sqrt{(r - r_0)^2 + f^2}, \quad r = \sqrt{x_1^2 + x_2^2}, \quad (77)$$

*r*₀ – радиус кольца фокусировки.

По аналогии с (76) следует, что электромагнитное поле на выходе дифракционного оптического элемента, фокусирующего в кольцо, имеет вид:

$$|W(x_{1}, x_{2})\rangle =$$

$$= \sqrt{2} \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) \sum_{n} ZZ(T_{h}^{n} | F_{\gamma n \ 0 \ 1}) + (78)$$

$$+ T_{e}^{n} | F_{\gamma n \ 0 \ 2}\rangle \exp(ikng(r)),$$

$$\gamma = \frac{\partial g(r)}{\partial r}.$$

Были проведены расчеты распределения интенсивности электромагнитного излучения в фокальной плоскости фокусатора в кольцо для различных сочетаний параметров системы. Вычисление поля проводилось на основе распределения поля на выходе ДОЭ (78) с помощью пропагатора, описанного в работе [13].

На рис. 2 приведены примеры расчета полей от фокусатора в кольцо для значений, указанных в табл. 1 (все размеры в мкм). При малых отношениях σ/f , где σ – параметр освещающего гауссова пучка, распределение интенсивности в фокальной плоскости фокусатора в кольцо близко к распределениям интенсивности, полученным в работах [18,20,21] в рамках скалярного приближения. В этом случае распределение энергии практически радиально-симметрично. При увеличении фокусного расстояния степень симметричности увеличивается. При увеличении отношения σ/f в распределении энергии вдоль кольца появляется асимметричность. Наличие асимметричности связано со следующими факторами:

- наличие линейной поляризации у падающей волны нарушает радиальную симметрию задачи, так как в разных точках фокальной плоскости электрические поля от различных точек на фокусаторе приходят под разными углами;
- при увеличении отношения σ/f появляется зависимость коэффициентов дифракции от направления локальной дифракционной решетки в случае линейной поляризации падающей волны.

Неравномерность интенсивности излучения в плоскости наблюдения на выходе из фокусатора в кольцо обусловлена неравномерностью значений коэффициентов пропускания (отражения) *E*- и *H*-поляризации в зависимости от текущего значения периода зонной структуры (дифракционной решетки).

Заключение

В данной статье представлен асимптотический метод решения задач дифракции на ДОЭ, который сочетает в себе решение задачи дифракции на периодической структуре с периодом сравнимым с длиной волны и геометрооптический подход. Решена задача дифракции на эталонной квазипериодической структуре, сочетающей в себе функции расщепителя пучка и дифракционной линзы. На основе решения эталонной задачи получено простое выражение для поля в плоскости, непосредственно прилегающей к ДОЭ. Полученное выражение позволяет оценить распределение поля на выходе ДОЭ, не прибегая к сложным вычислительным методам.

Благодарности

Работа выполнена при поддержке грантов РФФИ 07-07-97601, 07-07-96602, 08-07-99005, 07-07-91580-АСП, а также российско-американской программы «Фундаментальные исследования и высшее образование» ("BRHE").

Таблииа	1
1 00000000000000	-

Параметр	Значение (вариант 1), мкм	Значение (вариант 2), мкм
Длина волны λ	1	0,1
Параметр гауссова пучка σ	50	50
Расстояние от оптического элемента	1000	100
до плоскости наблюдения	1000	100
Фокусное расстояние	1000	100
Габаритные размеры оптического элемента	500×500	500×500

Рис. 2. Рассчитанные распределения интенсивности поля в фокальных плоскостях фокусаторов в кольцо с параметрами, приведенными в Табл. 1 (вариант 1 – слева; вариант 2 – справа).

Литература

- 1. **Кравцов, В.В.** Геометрическая оптика неоднородных сред / В.В. Кравцов, А.А. Орлов. М.: Наука, 1979.
- Moharam, M.G. Rigorous coupled-wave analysis of metallic surface-relief gratings / M.G. Moharam, T.K. Gaylord // JOSA A., 1986. – Vol. 3. – Issue 11. – P. 1780.
- Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd ed.) / A. Taflove, S. Hagness – Arthech House Publishers, Boston, 2000. – P. 852.
- Ильинский, А.С. Математические модели электродинамики. / А.С. Ильинский, В.В. Кравцов, А.Г. Свешников. – М.: Высшая школа, 1991.

- Харитонов, С.И. Асимптотические решения скалярного волнового уравнения / С.И. Харитонов, Л.Л. Досколович, Н.Л. Казанский // Компьютерная оптика, 2003. – № 25. – С. 49-53.
- Досколович, Л.Л. Асимптотические решения уравнения Гельмгольца для псевдопериодических структур / Л.Л. Досколович [и др.] // Компьютерная оптика, 2005. № 27. С. 50-55.
- Досколович, Л.Л. Асимптотические методы для решения задач дифракции на ДОЭ / Л.Л. Досколович [и др.] // Компьютерная оптика, 2006. – № 30. – С. 49-52.
- Ковалев, А.А. Дифракция плоской волны на ограниченной спиральной фазовой пластинке: параксиальная теория / А.А. Ковалев, В.В. Котляр // Компьютерная оптика, 2007. №31. С. 4-8.
- Котляр, В.В. Методы быстрого расчета дифракции лазерного излучения на микрообъектах / В.В. Котляр, Р.В. Скиданов, А.Г. Налимов // Оптический журнал, 2005. – Т.72, №5. – С. 55-61.
- Борн, М. Основы Оптики / М. Борн, Э. Вольф. Pergamon Press, 1986.
- Виноградова, М.Б. Теория волн / М.Б. Виноградова, О.В. Руденко, А.П. Сухоруков. – М.: Наука, 1976.
- Федорюк, М.В. Асимптотики, интегралы и ряды / М.В. Федорюк. – М.: Наука, 1987.
- Казанский, Н.Л. Компактная запись решений системы уравнений Максвелла в пространственно-час-

тотном представлении / Н.Л. Казанский, М.Л. Каляев, С.И. Харитонов // Антенны, 2007. – № 10. – С. 13-21.

- 14. Дирак, П. Принципы квантовой механики / П. Дирак. – М.: Мир, 1979.
- Дубровин, Б.А. Современная геометрия / Б.А. Дубровин [и др.]. М.: Наука, 1979.
- Golub, M.A. Computer generated diffractive multi-focal lens / M.A. Golub [and other] // Journal of Modern Optics, 1992. – Vol.39, № 6. – P. 1245-1251.
- Голуб, М.А. Дифракционный подход к синтезу многофункциональных фазовых элементов / М.А. Голуб [и др.] // Оптика и спектроскопия, 1992. – Т.73, №1. – С. 191-195.
- Голуб, М.А. Дифракционный расчет оптического элемента, фокусирующего в кольцо / М.А. Голуб [и др.] // Автометрия, 1987. – № 6. – С. 8-15.
- Electromagnetic Theory on Gratings / Ed. by R.Petit. Springer-Verlag, 1980.
- Голуб, М.А. Вычислительный эксперимент с элементами плоской оптики / М.А. Голуб [и др.] // Автометрия, 1988. – № 1. – С. 70-82.
- Казанский, Н.Л. Исследование дифракционных характеристик фокусатора в кольцо методом вычислительного эксперимента / Н.Л. Казанский // Компьютерная оптика. – М.: МЦНТИ, 1992. – Вып. 10-11. – С. 128-144.

THE ASYMPTOTIC METHOD FOR CALCULATION OF THE FIELD OF THE OPTICAL ELEMENTS HAVING THE BAND STRUCTURE

S.I. Kharitonov^{1,2}, L.L. Doskolovich^{1,2}, N.L. Kazanskiy^{1,2}, M.L. Kalyaev^{1,2} ¹Image Processing Systems Institute of the RAS, Samara, Russia, ²Samara State Aerospace University, Samara, Russia

Abstract

The paper describes a new asymptotic method for solving a light diffraction problem on bandstructured diffractive optical elements (DOEs). The method includes a rigorous solution to diffraction-by-periodic-structure problem with a wavelength-compared period, and an asymptotic approach to the calculation of the field behind the diffractive optical element. The light diffraction problem was solved for the reference quasi-periodic structure, which combines the functions of a diffraction grating and a diffractive lens. Simple approximation was obtained for the field behind the diffractive optical element based on the solution of the reference problem.

<u>Keywords</u>: asymptotic method, diffraction problem, band-structured diffractive optical elements, quasi-periodic structure, diffraction grating

<u>Acknowledgements</u>: The work was supported by the Russian Foundation for Basic Research (grants Nos. 07-07-97601, 07-07-96602, 08-07-99005, 07-07-91580-ASP), and within the framework of the Russian-American Basic Research and Higher Education Program ("BRHE").

<u>*Citation:*</u> Kharitonov SI, Doskolovich LL, Kazanskiy NL, Kalyaev ML. The asymptotic method for calculation of the field of the optical elements having the band structure [In Russian]. Computer Optics 2007; 31(4): 7-18.

References:

- [1] Kravtsov VV, Orlov AA. Geometrical optics of inhomogeneous media [In Russian]. Moscow: "Nauka" Publisher, 1979.
- [2] Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA A 1986; 3(11): 1780.
- [3] Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd ed.). Arthech House Publishers, Boston, 2000; 852 p.
- [4] Ilyinskiy AS, Kravtsov VV, Sveshnikov AG. Mathematical models in electrodynamics [In Russian]. Moscow: "Vysshaya shkola" Publisher, 1991.
- [5] Kharitonov SI, Doskolovich LL, Kazanskiy NL. Asymptotic solutions of the scalar wave equation [In Russian]. Computer Optics 2003; 25: 49-53.
- [6] Doskolovich LL. Asymptotic solutions of the Helmholtz equation for pseudo-periodic structures [In Russian]. Computer Optics 2005; 27: 50-55.
- [7] Doskolovich LL, Kazanskiy NL, Moiseev MA, Kharitonov SI. Asymptotic methods for solving diffraction problems on DOE [In Russian]. Computer Optics 2006; 30: 49-52.
- [8] Kovalev AA, Kotlyar VV. Plane-wave diffraction by a limited spiral phase plate: paraxial theory [In Russian]. Computer Optics 2007; 31: 4-8.
- [9] Kotlyar VV, Skidanov RV, Nalimov AG. Methods for rapidly calculating the diffraction of laser radiation at microscopic objects [In Russian]. Journal of Optical Technology 2005; 72(5); 55-61.
- [10] Born M, Wolf E. Principles of optics [In Russia]. Pergamon Press, 1986.
- [11] Vinogradova MB, Rudenko OV, Sukhorukov AP. Theory of waves [In Russian]. Moscow: "Nauka" Publisher, 1976.
- [12] Fedoryuk MV. Asymptotics, integrals and series [In Russian]. Moscow: "Nauka" Publisher, 1987.
- [13] Kazanskiy NL, Kalyaev ML, Kharitonov SI. Compact notation of Maxwell's set of equations solutions in the spatialfrequency representation [In Russian]. Antennae Publisher 2007; (10): 13-21.
- [14] Dirac P. The principles of quantum mechanics [In Russian]. Moscow: "Mir" Publisher, 1979.
- [15] Dubrovin BA, et al. Modern geometry [In Russian]. Moscow: "Nauka" Publisher, 1979.
- [16] Golub MA, et al. Computer generated diffractive multi-focal lens. Journal of Modern Optics 1992; 39(6): 1245-1251.
- [17] Golub MA, et al. Diffraction approach to the synthesis of multifunctional phase elements [In Russian]. Optics and Spectroscopy 1992; 73(1): 191-195.
- [18] Golub MA, et al. Diffraction calculation for an optical element which focuses into a ring [In Russian]. Optoelectronics, Instrumentation and Data Processing 1987; (6): 7-14.
- [19] Petit R (ed.). Electromagnetic Theory on Gratings. Springer-Verlag, 1980.
- [20] Golub MA, et al. Computational experiment with plane optical elements [In Russian]. Optoelectronics, Instrumentation and Data Processing 1988; (1): 70-82.
- [21] Kazanskiy NL. The study of the diffraction characteristics of focusators into the ring by computational experiment [In Russian]. Computer Optics 1992; 10-11: 128-144.