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Abstract

The article considers the conforming identificatimithe fundamental matrix in the image
matching problem. The method consists in the divisdf the initial overdetermined system
into lesser dimensional subsystems. On these stéiggs a set of solutions is obtained, from
which a subset of the most conforming solutiondefined. Then, on this subset the resulting
solution is deduced. Since these subsystems aneefbby all possible combinations of rows
in the initial system, this method demonstrateshhégcuracy and stability, although it is
computationally complex. A comparison with the nuth of least squares, least absolute de-
viations, and the RANSAC method is drawn.
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Introduction

The task of identification is to construct an omim
model of an object (system) from the results ofeobs-
tions of the input and output data. Often the idieation
of an object should be performed using an extrem
small number of measurements. This may be dueeo
requirement of efficiency, excessive cost or theassi-
bility to obtain a large number of measurements, et

In this case, the so-called conforming identifioati
method (CIM), which does not require a priori aspum
tions about the distribution of measurement errcas, be
applied. This method was considered in papers][dis2
cussing the task of identification of a controllebject.
An important feature of this method is its robusgi¢o
gross errors such as failures. In the case of Hoobeer-
vation errors, the results usually coincide wite thnes
obtained by least square method (LSM) and leastiates
deviations method (LADM) procedures.

The high accuracy and reliability of the methodhiis
case is provided by using a large number of subsyst
formed by various combinations of the rows of thi#al
system. However, because of this, the method Hagha
computational complexity and memory cost. Thufei
comes necessary to develop a parallel algorithnbeto
implemented on a multiprocessor system.

In paper [3] authors propose a method of conform
identification of the fundamental matrix from sdtoor-
responding points. In this paper we study the amur,
and reliability of the conforming identification ied in
comparison with other commonly used methods.

1. Formulation of fundamental matrix
identification problem

A model of a pinhole camera is used, assuming that

both images are obtained by cameras with the saae
trix of internal parameters:

ng

orted by the RF Ministrizadication and Science

f 0 u,
K,=K,=K =10 f v,
0 0 1

elywheref is a focal length of camerasio(vo) are coordi-

tiates of the main points of the cameras in thedinate
systems associated with the cameras.

Let M be a point in the global coordinate systefine T
coordinate vector of point M in the global coordaays-
tem is related to the coordinate vectors of thigpon
and m in the coordinate systems of the first and second
cameras by the equation [4]:

m, =PM,

m, =P,M,
where the projection matrices are defined as

P =K, [R,it)],

P, =K,[R,it,].

HereR1, R, are the 3x3 matrices describing the rota-
tion of the coordinate systems of the first andosec
cameras relative to the global one, dnd[tix t1y, t17]",
t2=[tox, t2y, t27] " are coordinates of the origin of the glob-
al coordinate system in the coordinate systembefitst
and second cameras, respectively.

The matrix R is formed as

R=R,R,R,,
where
1 0 0
Ry, =0 coqa) =sina)]|.
0 Fsin(a) coda)
cos(p) 0 + si(p)
m R,=| 0 1 o |
#sin(B) 0 codp)
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The corresponding points on two images are reld
by a fundamental matrix [4]. For points whose cdor
nates are given by 3x1 - vectoms;=[us,v1,1]" and
m, = [u'z,\/'z,l]T , the condition

m,"Fm, =0
is satisfied, where

Fll F12

F= F21 Fzz

F31 F32

Fis
Fl.
Fa

The equation for calculating the fundamental mat|
has the form:

F=KT[t]RK ™,

where f]« is constructed as

0 -t t,
[t =]t 0 -t
-, t, 0

For N pairs (N\>8) of corresponding points, assumir]
thatFs3=1, a system of linear equations can be formed-tg
timate the vector of the desired fundamental matrix value

.
c=[c, ¢, ..g| =
:
=[F11' |:12,F13, leszzv F23F 311 Fe,]z
where
R T T A
wo| LU WV W VUoVYy oYYy
Ug Uy UV U VU VY %y
_1 El
-1 g
y=| &= 7 €
_1 EN

& are errors related with inaccurate calculatiorthef co-
ordinates of the corresponding points.

Estimatec of vectorc can be obtained by solving th
system (2) using the LSM, the LADM, RANSAC [5], @
conforming identification. The number of observatip
on which the system (2) is formed, is extremely I§m
therefore, we apply the conforming identificatiosthmod.

2. Formulation of conforming identification problem

We consider the problem of estimating the vectof

linear model parameters:
y=Xc+¢, 3)

wherey and X are Nx1-vector andNxM - matrix ob-

vector of unknown errors. The matrk is composed of
rowsxi, i =1,N . The task of identification is to calculate

vector of estimateg using observationg andX.
If there is no a priori error information, then tleast-
;egquares method is usually used:
e=[x"x]"xy.

It is known that LSM estimates are unbiased aneceff
tive under the usual assumptions. However, witimalls
number of observations, these assumptions prole tm-
reliable because of the insufficient statisticalbgity of
probabilistic characteristics. The method of comfiog
identification is based on the assumption thatsthlations
obtained on the subsystems that are most freeigé moll
be closer to each other (i.e., conformed), andakk is to
ixdetermine such a subsystem. Here is a brief déiscripf
the identification algorithm based on the principfecon-
formity of estimates.

A certain set of subsystems of small dimensioreis "
tracted" from the initial system (3):

Ve =X +&,, k=1,2,..K (4)
Each subsystem (4) contains the rows of the initial
system (3). Let us further refer to these subsystams
lower-level subsystems. In this case, the set wfefe
9level subsystems contains subsystems with soaid-
f?natricesxk. By calculating an estimatg,_ from available

> observation, y« for each subsystem (4), we can obtain
C\' possible estimates on lower-level subsystems.

Similarly, it is possible to form a set &, higher-
level subsystems ¢¥xN dimension:

g, =X +&,1=12,..L, (5)

Eachl™ higher-level subsystem (5) contains a set of
lower-level subsystems (4), on which the correspand
setO(l) of estimates .. is calculated:

o) ={¢, 000} 1=1L, k=1K.

To characterize the conformity of s@¢), a function
of mutual proximity of the estimates is introduced:

wiy =Y (6, -5, )

ij=1,
iZ]

where¢;, G, | =1L,i=1K ,j = K are the estimates
obtained on lower-level subsystems contained inlthe
higher-level subsystem. Indicesindj in the right side of
the expression (6) take all possible pairs of \allide set
O(l) of estimates¢,,, k=1,K, K=C}' with minimum
value ofW(l) is called the most conformed one.

The hypothesis is that the most conformed subsystem

is the most noise-free, so the task is to finditldex | of
the higher-level subsystem:

G, (6)

(1]

=

0

served in the experiment, afd=[&1,&>,..., &) is Nx1-

W(l”)=m|inW(|), =1L, L=C..
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At the |t higher-level subsystem, we can either ¢
culate an estimate or a "cloud" of estimates [2].

Admittedly, the implementation of the described g

forming identification algorithm requires large cpata-
tional resources. So computing time for identificat
problem with parametetd=10,M=5,P=9 is 0,01 sec-
onds and computing time for identification problerith

parametersN=18, M=9, P=16 is 793.530322 seconds.

This is due to the lack of a priori information aamdmall

number of observations. That is why it becomes seq

sary to use an efficient parallel algorithm to éese the
computation time.
3. Parallel algorithm of conforming identification

In paper [6] a parallel algorithm of conforming iidie
fication was considered. Sets of higher-level satesys

were formed on different processoBuibsystems indiceq

are formed sequentially because it is necessdyrio all

possible indexes, which leads to the downtime efftto-
cessors. It is worth noting that the indices of shbsys-
tems of the subsystems of the upper and lowerdezaah
be formed once. It will eliminate the downtime diet
processors in further calculations of the solutions

Fig. 1 shows the general block diagram of the pgego
algorithm and detailed diagrams of the algorithmges,
where Fig. & shows general block diagram, Fig.demon-
strates data loading and subsystem generatiorild-stpows
the calculation of the higher-level subsystem lith least
conformity coefficient for each thread, and Fid.ghows
the selection of the higher-level subsystem with lgast
conformity coefficient and calculation of the saut

Because of the need to combine all the resultsabf
culations, the master-slave communication topolagg
MPI are used.

For the above algorithm, the speedup and efficie
characteristics were calculated by solving the tifieation
problem with parametefd=18, M=9, P=16. The results
are shown in Table 1. The calculations were perorion a
supercomputer “Sergei Korolev’. One node with two-p
cessors, which have 4 cores each, was used.

The data in Table 1 shows that constructed pars
algorithm is well scalable. Its execution time dexges
almost linearly proportionally to the number of éhds
used. This algorithm is quite efficient because dakeu-
lation is evenly distributed among the threads.h/iite
increase in the dimension of the original systehe (
numberN of rows), the execution time of the program
significantly increased.

Table 1. Speedup and efficiency of the parallebaigm

Number of threads  Execution time (sec.)  Speedup ici&ficy

_ 4. Experimental study of accuracy and reliability

When modeling the initial data, the following paem
n ters are used:

Al

960 0 96 0
K=K,=K ,=| 0 540 960,t,=|0],
0 0 1 0
1 0 O|(a=0
e R,=/0 1 0| |B=0].
00 1/ly=0
Load data
and form the subsystems
Y

Load system
- of equations
Determine the subsystem eq
with the least conforming

N “ient ~h thread - -
coefficient for each threa Form the matrix
Y ()}{_il}ldice;sfolr
igher-leve
Select the hl:gher-level S'Zf{ngVSlelﬂS
subsystem with the least -
corg’ormln coefficient Y
and calculate solution -
Form the matrix
o{ indices for
¢ ovl\)fer—level
subsystems
a) b) i
Calculate of the
lower-lewel subsystem
solutions
Calculate of conformity
L coefficient
C Gather results
from all threads
){ew +
conformity -
cy coefficient is less h D],le.te}fml’;e /
then pre- e higher-leve

subsystem with_
the least conforminy
coefficient

Y

Form the solution
on the selected
higher-level
subsystem

vious

Record current
coefficient and index of
higher-level subsystem

llel

d)
Fig. 1. Block diagram of the algorithm
When forming the elements of the matRy in (1),

the anglesiy, B2, y2 are set in the interval {08°]. Vector
t» is specified as follows:

is X pcosf)
t,=|y|=|psin@®)|.pOI[5,6],¢0[0,360], I [-1,1
z z

1 793.530322 1.000000 1.000000
2 399.019544 1.988700 0.994350
3 264.601322 2.998966  0.999655
4 202.061476 3.927173  0.981793
5 170.967832 4.641401 0.928280
6 145.024123 5.471713 0.911952
7 139.921319 5.671261 0.810180
8 103.603291 7.659316  0.957414

With the above mentioned parameters, 100 sets of
points m; and my are generated. In the formed sets of
points Gaussian noise with SNRO and mean equal to
zero is added. Then a random gross error is ademd.
each modeled set of corresponding points, a sysfdim-
ear equations is formed. Next, estimatesf the funda-
mental matrix coefficients are calculated using [tisM,
the LADM, and the conforming identification method.

Each element of the resulting matFixs normalised:
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Table 2 gives an example of the obtained coeffisig
of fundamental matrices calculated using the LSh
LADM, and the method of conforming identificatio
(CIM).

Table 2. Calculated coefficients of fundamentalricas

Coefficients LSM LMM CiM
Fi1 -0.000000014 -0.0000000109 0.0000000117
Fio 0.0000002480 0.00000023645 0.0000012208
Fis -0.0002013594  -0.0002574948  -0.00250984941
Fo1 -0.0000000731 -0.0000000565 -0.00000081671
Fao 0.00000021004 0.00000021202 0.0000002602
Fas -0.0037893080  -0.0038348863  -0.0055635204
Fa1 -0.0001750568 -0.0000485521 0.0018102120
Fa2 0.00287111864 0.00309045186  0.0047754023
Fa3 0.99998935123  0.99998783697  0.9999683327

To determine the reliability of methods for eacls-s
tem, a set of 500 corresponding pointsandm; is gen-
erated. For each pair of corresponding pointsadcsts to

epipolar linesd,, i=1,50C are calculated:

el

: 2.2
Yl *1
where (i1, li2, lis) are calculated as follows:
l=ullF,

where | =[li, liz, lig] ", u =[ui',v,',1]T. As a measure of

the accuracy of the methods, valuds, k=1,100 are
used. They are calculated by the formula:

_1K2}/2
%{E;%]’ )

wheredy is the distance frori" test point to the epipolal
line for K" set of pointsn; andm,, K=500.
Table 3 shows the maximum and minimum values
dk for each method.
Table 3. Values ofid

LSM LADM CIM
Maximum value 384.92 476.20 339.90
Minimum value 2.36 2.36 1.02

For a set of valued, calculated by formula (7), histo
grams are formedlhe interval of possible values is d

vided into 20 intervalad, | :1,7) and for each interval,
the probabilitiesp, for the values of the critericskJAd,
are determined:

L1

p.Ngw
where N is total number of generated points, is the
number of points included in th# Interval of the histo-
gram,m is the number of intervals of the histogram. T

histograms and the estimated distribution functibithe
accuracydy for each method are shown in Fig. 2.

Values of Histogramm
50

40
30

>

5 3
Val
1.2
1.0
08 ~
b 06—
g
1 0.2 O Clm
/ —w— lad
o ————-r—r"r—"-r—r—
TN NSNS NSNS NSRS NSRS
ST~ NARAFTTENTORNND oIS
MO NN O~ TS0 QNN SO~ kN~
NNNANNANSR AR AT Y YRR NS
b) Intervals of dk

Fig. 2. Histograms ofk (a); Reliability graphs of accuracy (b)

The graphs in Fig. 2 show that the conforming ident
fication method has higher accuracy and reliability
comparison with the LSM and LADM. In the problem of
fundamental matrix identification, the least-sqsaselu-
tion will give a more accurate solution than the.

The study of accuracy and reliability of the CIMdan
RANSAC methods was also carried out. Fig. 3 shows a
histogram of distances and distribution functiordiaffor
both methods.

The graphs in Fig. 3 demonstrate that the CIM s$ligh
ly exceeds the RANSAC method in accuracy and riéliab
ity. Also, unlike RANSAC method, the conforming ide
tification method does not require setting the shoéd
value and the number of iterations.

The algorithm was applied to real images form &te s
ofTemple of the Diskouroi”. To find the feature ptsrin
the images the algorithm SURF [7] from OpenCV ligra
was used. Figure 4 shows the selected images anubth
tained corresponding points.

Using the selected feature points, we obtain aefyst
of linear equations to which an extra gross erras add-
ed, and the fundamental matrix is further calcaag&m-
ilarly, for the generated test points the distadgeand
then parameted were calculated. The conformity coeffi-
cients for the CIM and RANSAC equal 8803,506 and
12297,313, respectively.

Conclusion

Experimental studies demonstrate that for the prabl
of the fundamental matrix identification the methofl
conforming identification ensures a more accurate-s
tion, and has a higher reliability as comparech® tSM
and the LADM. The conforming identification method
'Eslightly exceeds the RANSAC method in terms of accu
racy and reliability. Also, the CIM does not requset-

ting the threshold value and the number of iteratio
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Values of Histogramm Values of Reliability
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ig. 3. Histograms of(a); Reliability graphs of accuracy (b)
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Fig. 4. Test images (a, b); selected feature pdicits
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