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Abstract  

In this paper, a compact design of a balanced 1×4 optical power splitter based on coupled mode 

theory (CMT) is presented. The design consists of seven vertically slotted waveguides based on 

the silicon-on-insulator platform. The 1×4 OPS is modelled using commercial finite element 

method (FEM) simulation tool COMSOL Multiphysics 5.1. The optimized OPS is capable of 

working across the whole C-band with maximum ~39 % of power decay in the wavelength range 

1530 – 1565 nm.  
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Introduction 

Research on silicon photonics can be dated back to 

the 1980s. Though, the previous decade has observed an 

extraordinary development in the field. Based on highly 

advance silicon semiconductor technology, silicon 

photonics would deliver with an inexpensive, highly inte-

grated electronic-photonic platform, in which ultra-

compact photonic devices and electronic circuits are con-

verged. The fundamental motive behind silicon photonics 

is the ability to use CMOS-like fabrication resulting in 

high-volume production at low cost [1]. Optical power 

splitters (OPS) play a fundamental role in optical com-

munication systems [2, 3] and periodic optical sources for 

integrated microfluidic devices [4]. These optical ele-

ments are substantial for conveying the optical fiber to 

end-users [5]. OPSs are principally based on either Y-branch 

splitters [3, 6, 7] or multimode interference (MMI) split-

ters [8 – 10]. Generally, the former is more compact but 

the optimization of their branch region is complicated. 

The latter is simpler, while it has large modal interaction 

length. For optical elements based on modal interference, 

reduction of the modal interaction length can result in in-

creased sensitivity to fabrication tolerances and therefore 

can sacrifice device robustness. For instance, shortening 

the interaction length of directional couplers by reducing 

the gap between waveguides can affect the fabrication 

tolerances, which are already very low due to the com-

paratively tight guiding that is characteristic of semicon-

ductor waveguides.  

There are several designs of OPS, which are proposed 
recently. 1×2 and 1×3 Ultra compact power splitters 
based on the horizontal nano-plasmonic slot waveguides 
are proposed [11]. A 1×4 OPS based on multimode inter-
ference (MMI) coupler in silicon (Si)-gallium nitride 
(GaN) slot waveguide structure is presented. This device 
can be useful to divide optical signal energy uniformly in 
the C-band range into four output ports [12]. In [13] 1×4 
OPS is proposed by combining three 1×2 OPS based on 
two-mode interference (TMI) effects in slot waveguides. 

An exceptional waveguide geometry known as a slot 

waveguide is presented by Almeida et al in 2004 where 

the guided light is strongly confined within a narrow low-

index slot (S) between the two high indices photonic 

wires [14,
 
15]. There are two claddings (high index mate-

rial) separated from each other with a narrow slot (low 

index material) [16,
 
17]. The electric field propagating in 

the slot suffers a disruption at the high refractive index 

contrast interface which makes the electromagnetic wave 

to confine intensely in the narrow slot than in the clad-

ding which can lead to the implementation of compact 

and high-performance photonic components such as 

resonators [18] and polarization beam splitters [19,
 
20]. 

Moreover, there are no confinement losses in the slot 

waveguide structure due to the strong high power con-

finement inside the slot area. Therefore, there is a note-

worthy attention in designing photonic devices based on a 

slot waveguide structure that integrates semiconductor 

materials. 

In this paper, we modelled 1×4 OPS of size 8 µm 

based on coupled-mode theory (CMT) [21] by using 

seven vertically slotted waveguides at 1550 nm TE-po-

larized light. Numerical optimizations were performed on 

the coupling gap (C1, C2 and C3) between the slot 

waveguides structures (by keeping the coupling lengths 

constant) in order to obtain an equal power distribution 

among 4 outputs. The CMT is used to evaluate the mode 

coupling or conversion in optical waveguides. The physi-

cal models for coupled waveguide systems contain two or 

more dielectric waveguides employed in close proximity. 

These waveguides maybe parallel to each other or may 

have variable separations. The slot waveguide core is 

composed of two Si (n
 
=

 
3.48) slab surrounding a narrow 

slot. The slot is simply an air (n
 
=

 
1). The splitter sche-

matic structure is shown in fig. 1. And the slot waveguide 

cross section is depicted by the inset. All the simulations 

are performed by using Comsol Multiphysics 5.1 which 

solves the Helmholtz equation with the finite element 

method (FEM). 
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Fig. 1. Schematic of a 1×4 OPS 

1×4 OPS model 

In our proposed design, we used seven vertically slot-

ted waveguides in order to form a compact 1×4 OPS. 

WSi, HSi and G are chosen at 150 nm, 220 nm and 40 nm 

respectively, in order to acquire a maximum confinement 

in the slot region and ensure a fundamental TE mode in 

the proposed power splitter. The WGs are placed in a 

close proximity so that the evanescent modes of one WG 

overlap with the modes of a second guide. The light from 

one WG gradually transfers back and forth between the 

WGs. It is possible to couple any desired faction of light 

from one WG to other by choosing the separation be-

tween the WGs and length of the coupling region,  

The length of WG1, WG4, WG5, WG6 and WG7 is 

fixed at 2.5 µm which provides an adequate coupling 

length between the adjacent WGs. While the length of the 

WG2 and WG3 is 7 µm which serves as output at port 2 

and port 3. The output from WG6 and WG7 is collected 

at port 1 and port 4. Hereafter, we will only focus on the 

coupling gap in order to obtain the balanced OPS. 

Likewise, C1, C2 and C3 are the coupling gap be-

tween WG1-WG2/WG3, WG2/WG3-WG4/WG5, 

WG4/WG5-WG6/WG7, respectively. In COMSOL simu-

lations, the subdomains in the WG cross section were di-

vided into triangular mesh elements. The grid size is set 

to λ / 15 for the WGs geometries and λ / 8 for the air do-

main so that precise simulation results can be obtained 

within the available computational resources. Scattering 

boundary conditions were applied at the outer edges of the 

FEM simulation window to estimate an open geometry. 

Optimization of coupling gap, C1 

The coupling strength can be very sensitive to the dis-

tance between the WGs and it is significant to ultimately 

pick a design that can function adequately given the type 

of deficiencies that are expected from the manufacturing 

process. In the first stage, C1 is varied from 30
 
–

 
200 nm be-

tween WG1 and the adjacent WGs (2 and 3). The cou-

pling efficiency of C1 is plotted in fig. 2. It can be seen 

that when C1
 
<

 
45 nm, the energy doesn’t transfer to the 

adjacent WGs instead it confines itself in C1. This hap-

pens because the gap is too small that it behaves as an-

other slot WG and tries to confine the energy in C1. 

Therefore, an optimal separation between two WGs is 

important in order to obtain the maximum coupling.  

A maximum coupling efficiency is obtained at values 

between 90 – 125 nm where the power is equally divided 

between WG2 and WG3 with less coupling losses. 

Hence, we used an optimal value of C1
 
=

 
115 nm in our 

splitter design for maximum coupling. Based on these re-

sults, C2 is also fixed at 115 nm to obtain maximum cou-

pling between WGs (2, 3) and WGs (4, 5). 

 
Fig. 2. Coupling efficiency C1 versus coupling gap 

Optimization of coupling gap, C3 

In order to obtain the balanced 1×4 OPS, C3 has to be 

slightly adjusted. If we consider on the right half of the 

power splitter, we can see that the energy from WG5 is 

transferred to WG7 and some part of the energy is cou-

pled back to WG3. The distribution of the power between 

WG3 and WG7 is not equal as seen in fig. 3 where nor-

malized intensity distribution at port 1, port 2, port 3 and 

port 4 are shown for various values of C3.  

 
Fig. 3. Coupling gap, C3 versus intensity distribution  

at port 1, port 2, port 3 and port 4 

For values of C3 < 140 nm, the output intensity at Port 

2 and Port 3 is less than Port 1 and Port 4. For instance: at 

C3 = 120 nm, the intensity obtained at port 1, port 2, port 

3 and port 4 is 26 %, 24.2 %, 24.4 % and 25.4 % respec-

tively. Whereas on the other hand, when C3 increases, the 

intensity in Port 2 and Port 3 also increases gradually.  

The optimized value of C3 is obtained at 140 nm where 

the OPS is balanced with 25 % of power transmission at 

each port as shown in fig. 3. The line graph and the nor-
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malized intensity contour plots at Port 1, Port 2, Port 3 and 

Port 4 are shown in fig. 4a and fig. 4b, respectively.  

(a)  

(b)  
Fig. 4. Normalized intensity at Port 1, Port2, Port3 

and Port 4, (a) Line graph, (b) Contour plot 

Performance of an optimized balanced 1×4 OPS 

over whole C-band (1530 – 1565 nm) 

In IR optical communications, C-band refers to the 

wavelength range 1530-1565 nm, which corresponds to 

the amplification range of erbium-doped fiber amplifier 

(EDFA). The 1×4 OPS was designed and optimized at 

1550 nm. The performance of the power splitter was ana-

lysed and found that there is a maximum ~ 39 % of power 

decay across the whole C-band as can be seen in fig 5. 

The parametric sweep function is used to calculate the 

electric field in the slot with a wavelength increment of 2. 

The designed power splitter remains balanced over the 

wavelength range of 1530 –1565 nm.  

 
Fig. 5. Relative intensity at the output 

of the 1×4 OPS versus wavelength 

Conclusion 

In this paper, we presented a compact 1×4 balanced 

OPS based on silicon on insulator by using seven slot 

waveguides at TE polarization. This power splitter is ca-

pable of operating in whole infrared optical communica-

tion C-band (1530 – 1565 nm). Our designed splitter is a 

promising candidate for high-density photonic integrated 

circuit due to its ultra-short length and excellent perform-

ance. Based on this design, splitters with various power 

distributions at the output can be established by varying 

the coupling gap. In future, we would like to extend this 

study to demonstrate similar OPS with a large number of 

output ports. 
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