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Abstract 
This paper presents a framework to automatically read timestamps for surveillance video. 

Reading timestamps from surveillance video is difficult due to the challenges such as color 
variety, font diversity, noise, and low resolution. The proposed algorithm overcomes these 
challenges by using the deep learning framework. The framework has included: training of both 
timestamp localization and recognition in a single end-to-end pass, the structure of the recognition 
CNN and the geometry of its input layer that preserves the aspect of the timestamps and adapts its 
resolution to the data. The proposed method achieves state-of-the-art accuracy in the end-to-end 
timestamps recognition on our datasets, whilst being an order of magnitude faster than competing 
methods. The framework can be improved the market competitiveness of panoramic video 
surveillance products. 
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Introduction 

The timestamp plays a critical role in video 
semantics analysis. In surveillance videos, the timestamp 
indicates event time. The information of timestamp of 
video and image can be stored in the timestamp channel 
and video/image players can choose whether the 
timestamp is overlaid on each frame/image according 
users’ option. Another way is that a timestamp is 
superimposed into a frame/image. For the old analog 
videos timestamps have to be superimposed into videos; 
for the nowadays videos timestamps may purposely be 
superimposed into videos so that they cannot be easily 
changed, of course videos may have both encoded 
timestamp information and the superimposed timestamp. 
This paper considers the common case in which a 
timestamp has been superimposed on a surveillance 
video, so the algorithm presented in this paper does not 
need to use these encoded timestamps.  

Figure 1 shows the two frames with timestamp from 
surveillance videos. Hence, it is highly desired to develop 
the algorithms for reading the superimposed digital video 
timestamp, independently of the timestamp encoded in 
the timestamp channel. 

In this paper, we propose a novel end-to-end 
framework which simultaneously locates and recognizes 
timestamp in scene images. As the first contribution, we 
present a model which is trained for both timestamp 
localization and recognition in a single learning 
framework. The proposed method locates and recognizes 
timestamp in surveillance video real time. 

As the second contribution, we show how the state-
of-the-art object localization methods [22, 23] can be ex- 
tended for timestamp localization and recognition, taking 
into account specifics of timestamp such as the 
exponential number of classes and the sensitivity to 
hidden parameters such as timestamp aspect and rotation. 
The method achieves state-of-the-art results on our 

datasets and the timecost is faster than the our previous 
proposed methods. 

 

 
Fig. 1. Two frames with timestamp 

The rest of the paper is organized as follows. 
Section 2 reviews the related work. Section 3 presents the 
proposed method in details. The experimental results are 
presented in Section 4, followed by conclusion drawn in 
Section 5. 

Related works 

Timestamp localization  

The timestamp localization is a very interesting 
problem in video analysis. Timestamp is a static region 
but the methods for detecting static regions cannot be 
used to detect the timestamps in surveillance videos 
because the scene objects appear as static regions too. 
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The methods for detecting static regions may be effective 
for some kinds of videos such as sports video, home 
video, and news videos because the scenes in these 
videos keep changing. However, the methods for 
detecting static regions are not applicable for surveillance 
videos because the surveillance cameras have little 
camera motion so that most of scene objects are static. 
The timestamp localization also can be considered as a 
scene text localization problem because the digits 
representing time and date form the text of timestamp. 
Jaderberg et al. [3] train a character-centric CNN [4], 
which takes a 24×24 image patch and predicts a text/no-
text score, a character and a bigram class. The input 
image is scanned by the trained network in 16 scales and 
a text saliency map is obtained by taking the text/no-text 
output of the network. Given the saliency maps, word 
bounding boxes are then obtained by the run length 
smoothing algorithm. The method is further improved in 
[5], where a word-centric approach is introduced. First, 
horizontal bounding-box proposals are detected by 
aggregating the output of the standard Edge Boxes [6] 
and Aggregate Channel Feature [7] detectors. Each 
proposal is then classified by a Random Forest [8] 
classifier to reduce the number of false positives and its 
position and size is further refined by a CNN repressor, to 
obtain a more suitable cropping of the detected word 
image. Gupta et al. [9] propose a fully-convolutional 
regression network, drawing inspiration from the YOLO 
object detection pipeline [10]. An image is divided into a 
fixed number of cells (14×14 in the highest resolution), 
where each cell is associated with 7 values directly 
predicting the position, rotation and confidence of text. 
The values are estimated by translation-invariant 
predictors built on top of the first 9 convolutional layers 
of the popular VGG-16 architecture [11], trained on 
synthetic data. Tian et al. [12] adapt the Faster R-CNN 
architecture [13] by horizontally sliding a 3×3 window on 
the last convolutional layer of the VGG-16 [11] and 
applying a Recurrent Neural Network to jointly predict 
the text / non-text score, the y-axis coordinates and the 
anchor side-refinement. Similarly, Liao et al. [14] adapt 
the SSD object detector [15] to detect horizontal 
bounding boxes. Ma et al. [16] adapt the Faster R-CNN 
architecture and extend it to detect text of different 
orientations by adding anchor boxes of 6 hand-crafted 
rotations and 3 aspects. However, the existing text 
localization algorithms cannot get the satisfactory results. 

Timestamp recognition 

Timestamp recognition is a special case of the 
timestamp recognition problem. The timestamp 
recognition also can be considered as a scene text 
recognition problem because the digits representing time 
and date form the text of timestamp. Jaderberg et al. [5] 
take a cropped image of a single word, resize it to a fixed 
size of 32×100 pixels and classify it as one of the words 
in a dictionary. In their setup, the dictionary contains 
90000 English words and words of the training and 
testing set. The classifier is trained on a dataset of 9 
million synthetic word images uniformly sampled from 
this dictionary. Shi et al. [17] train a fully-convolutional 

network with a bidirectional LSTM using the 
Connectionist Temporal Classification (CTC), which was 
first introduced by Graves et al. [18] for speech recognition 
to eliminate the need for pre-segmented data. Unlike the 
proposed method, Shi et al. [17] only recognize a single 
word per image (i.e. the output is always just one sequence 
of characters), they resize the source image to a fixed-sized 
matrix of 100×32 pixels regardless of how many characters 
it contains and the method is significantly slower because 
of the LSTM layer. 

Proposed framework 

This section presents the methods of localizing and 
recognizing timestamps for each individual video. Two 
observations are obtained from the collected timestamps. 
The first one is that a timestamp consists of one/two lines 
of digits representing date and time within a rectangle 
surrounding the digits. The other is that the timestamp 
digits are in the same color. Hence, the digit color of a 
timestamp can be known through learning from the 
instances of its s-digits (s-digits are the digits on the 
second place of timestamps). Thus, all digits of the given 
timestamp can be extracted by using the learnt digit color. 
Based on the above discussion, a procedure for removing 
timestamps is formed. The proposed model localizes 
timestamp regions in a given scene image and provides 
timestamp transcription as a sequence of characters for all 
regions with timestamp. The model is jointly optimized 
for both timestamp localization and recognition in an 
end-to-end training framework. 

Fully convolutional network 

We adapt the YOLOv2 architecture [10] for its 
accuracy and significantly lower complexity than the 
standard VGG-16 architecture [11], as the full VGG-16 
architecture requires 30 billion operations just to process 
a 224×224 (0.05Mpx) image [10]. Using YOLOv2 
architecture allows us to process images with higher 
resolution, which is a crucial ability for timestamp 
recognition – processing at higher resolution is required 
because a 1Mpx scene image may contain timestamp 
which is 10 pixels high, so scaling down the source image 
would make the timestamp unreadable. 

The proposed method uses the first 18 convolutional 
and 5 max pool layers from the YOLOv2 architecture, 
which is based on 3×3 convolutional filters, doubling the 
number of channels after every pooling step and adding 
1×1 filters to compress the representations between the 
3×3 filters [10]. We remove the fully-connected layers to 
make the network fully convolutional, so our model final 
layer has the dimension of 

1024
32 32
W H

× × ,  

where W and H denote source image width and height [10]. 

Region proposals 

Similarly to Faster R-CNN [13] and YOLOv2 [10], 
we use a Region Proposal Network (RPN) to generate 
region proposals, but we add rotation γθ which is crucial 
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for a successful timestamp recognition. At each position 
of the last convolutional layer, the model predicts k 
rotated bounding boxes, where for each bounding box γ 
we predict 6 features – its position γx, γy, its 
dimensions γw, γh, its rotation γθ and its score γp, which 
captures the probability that the region contains 
timestamp.  

The bounding box position and dimension is encoded 
with respect to predefined anchor boxes using the logistic 
activation function, so the actual bounding box position 
(x, y) and dimension (w, h) in the source image is given as 

( ) ,x xx c= σ γ +  (1) 

( ) ,y yy c= σ γ +  (2) 

exp( ) ,w ww r= α  (3) 

exp( ) ,h hh r= α  (4) 

,rθθ =  (5) 
where cx and cy denote the offset of the cell in the last 
convolutional layer and αw and αh denote the 
predefined height and width of the anchor box α. The 
rotation θ∈(– (π / 2), π / 2) of the bounding box is 
predicted directly by rθ. 

We followed the approach of Redmon et al. [10] and 
found suitable anchor box scales and aspects by k-means 
clustering on the aggregated training set. Requiring the 
anchor boxes to have at least 60 % intersection-over-
union with the ground truth led to k = 14 different anchor 
boxes dimensions. 

For every image, the RPN produces W 32×H 32×6k 
boxes, where k is the number of anchor boxes in every 
location and 6 is the number of predicted parameters (x, y, 
w, h, θ and the timestamp score). 

Bilinear sampling 

Each region located in the previous stage has a 
different size and rotation and it is therefore necessary to 
map the features into a tensor of canonical dimensions, 
which can be used in recognition. 

Faster R-CNN [13] uses the RoI pooling approach of 
Girshick [19], where a w×h×C region is mapped onto a 
fixed-sized W ′×H ′×C grid (7×7×1024 in their 
implementation), where each cell takes the maximum 
activation of the (w / W)×(h / H) cells in the underlying 
feature layer. 

In our model, we instead use bilinear sampling to map 
a w×h×C region from the source image into a fixed-
height (wH ′ / h)×H ′×C tensor (H ′ = 32). This feature 
representation has a key advantage over the standard RoI 
approach as it allows the network to normalize rotation 
and scale, but at the same to persist the aspect and 
positioning of individual characters, which is crucial for 
timestamp recognition accuracy. 

The transformation allows for shift and scaling in x- 
and y- axes and rotation and its parameters are taken 
directly from the region parameters. 

Timestamp recognition 
Given the normalized region from the source image, 

each region is associated with a sequence of characters or 
rejected as not timestamp in the following process. The 
main problem one has to address in this step is the fact, 
which timestamp regions of different sizes have to be 
mapped to character sequences of different lengths. 
Traditionally, the issue is solved by resizing the input to a 
fixed-sized matrix(typically 100×32) and the input is then 
classified by either making every possible character 
sequence (i.e. every word) a separate class of its own, 
thus requiring a list of all possible outputs in the training 
stage, or by having multiple independent classifiers, 
where each classifier predicts the character at a 
predefined position. Our model exploits a novel fully-
convolutional network (see Table 1), which takes a 
variable-width feature tensor 'W H C× × as an input 
( ' /W wH h= ) and outputs a matrix ( /4) | |W A× , where A 
is the alphabet (e.g. all English characters). The matrix 
height is fixed (it’s the number of character classes), but 
its width grows with the width of the source region and 
therefore with the length of the expected character 
sequence. 

As a result, a single classifier is used regardless of the 
position of the character in the word (in contrast to 
Jaderberg et al. [20], where there is an independent 
classifier for the character “A” as the first character in the 
word, an independent classifier for the character “A” as 
the second character in the word, etc). The model also 
does not require prior knowledge of all words to be 
located in the training stage, in contrast to the separate 
class per character sequence formulation. The model uses 
Connectionist Temporal Classification (CTC) [17] to 
transform variable-width feature tensor into a conditional 
probability distribution over label sequences. The 
distribution is then used to select the most probable 
labelling sequence for the timestamp region. Let 
y = y1, y2,…, yn denote the vector of network outputs of 
length n from an alphabet A extended with a blank 
symbol “–”. 

In training, an objective function that maximizes the 
log likelihood of target labeling p(w | y) is used. In every 
training step, the probability p(wgt

 | y) of every timestamp 
region in the mini-batch is efficiently calculated using a 
forward-backward algorithm similar to HMMs training 
and the objective function derivatives are used to update 
network weights, using the standard back-propagation 
algorithm (wgt denotes the ground truth transcription of 
the timestamp region). 

At test time, the classification output w* should be 
given by the most probable path p(w | y), which 
unfortunately is not tractable, and therefore we adapt the 
approximate approach of taking the most probable 
labelling. At the end of this process, each timestamp 
region in the image has an associated content in the form 
of a character sequence, or it is rejected as not timestamp 
when all the labels are blank. The model typically 
produces many different boxes for a single timestamp 
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area in the image; we therefore suppress over-lapping 
boxes by a standard non-maxima suppression algorithm 
based on the timestamp recognition confidence, which is 
the p (w* | y) normalized by the timestamp length. 

Training 

The training dataset for evaluating the proposed 
timestamp localization and recognition algorithm consists 
of 300 video clips (704×704) and 300 video clips 
(1280×720) cropped from the surveillance videos. Each 
clip is about 20 second long with a working digital video 
timestamp. 

We pretrain the localization CNN using the 600 video 
clips for 3 epochs. The recognition CNN is pretrained on 
the 600 video clips for 3 epochs, with weights randomly 
initialized from the N(0, 1) distribution. As the final step, 
we train both networks simultaneously for 3 epochs on the 
surveillance video dataset. For every video, we randomly 
crop up to 30 % of its width and height. We use standard 
Stochastic Gradient Descent with momentum 0.9 and 
learning rate 10 − 3, divided by 10 after each epoch.  

Experimental results 

This section evaluates the proposed framework in two 
aspects. The proposed framework uses two HikvisionTM 
network cameras and its software is implemented using 
C++ on a workstation with Intel i7 3.10 GHz CPU and 
8 GB memory. Two kinds of experiments are conducted 
to evaluate the framework. The first kind of experiments 
is on accuracy and computing time of s-digit localization 
and timestamp localization. The second is on accuracy of 
timestamp recognition for surveillance videos. Here 
experimental works are presented to verify that our 
algorithm is feasible and has good performance.  

Dataset preparation and experiment setting 

(1) Original video database 
The dataset for evaluating the proposed timestamp 

localization and recognition algorithm consists of 1000 
video clips (704×576) and 1000 video clips (1280×720) 
cropped from the surveillance videos. Each clip is about 
40 second long with a working digital video timestamp.  

(2) Synthetic video database with OpenCV Library  
To demonstrate the proposed framework is robust to 

different kinds of video, we tried to generate another 
synthetic video database with the OpenCV function 
library in C and C++ coding language on visual studio 
2010. For each video, we insert a superimposed working 
timestamp to frames for the synthetic video database 
generation. The synthetic video database includes 1000 
video clips. Each clip is about 30 second long with a 
working digital video timestamp.  

(3) TRECVID 2017 video database 
We use i-LIDS airport surveillance video data from 

received 2017 video database to test the proposed 
framework. The data consist of about 150h of airport 
surveillance video data (courtesy of the UK Home 
Office). We tried to generate 1000 video clips from 

i-LIDS airport surveillance video. Each clip is about 20 
second long with a working digital video timestamp.  

(4) Evaluation standards 
To evaluate the reading timestamps efficiency, the 

recall rate (Rr) and precision rate (Rp) are used, which are 
common standard in video and image related detection 
and classification research. The recall rate is the 
percentage of correctly located or recognized timestamps 
in videos among all video databases; a high recall rate 
can well prove the localization or recognition timestamps 
accuracy.  

100%,c
r

c m

NR
N N

= ×
+

 (6) 

100%,c
p

c f

NR
N N

= ×
+

 (7) 

where Nc is the number of correctly located or recognized 
timestamps in videos; Nm is the number of missed located 
or recognized timestamps in videos; Nf is the number of 
falsely located or recognized timestamps in videos. 

Experiments on timestamp localization 
In this section, the proposed framework compared to our 

previous method in [21] for of timestamp localization. An 
experiment is done to evaluate the accuracy and computing 
time of timestamp localization using three video databases. 
The results are given in Table 1, Table 2 and Table 3. Total 
indicate the numbers of test videos; μ and σ are the means 
and the standard deviations of computing times of locating 
the timestamp for a batch of videos. The experiments results 
show that our method can achieve a very high accuracy 
more than the proposed method in [21] for timestamp 
localization. The experimental results also show that this 
method can accurately locate the timestamp in a very low 
cost of computing. 

Experiments on timestamp recognition 
Here we conduct the experiments to evaluate the 

accuracy of timestamp recognition using three video 
databases in section 4.1, and compared the results to our 
previous method in [21]. The results are given in Table 4, 
Table 5 and Table 6. The experiments results show that 
our method can achieve a very high accuracy more than 
the proposed method in [21] for timestamp recognition.  

Conclusions and future work 

A novel framework for timestamp localization and 
recognition was proposed. The model is trained for both 
timestamps localization and recognition in a single 
training framework. 

The proposed model achieves state-of-the-art 
accuracy in the end-to-end timestamp recognition on our 
dataset, whilst being an order of magnitude faster than the 
previous methods in [21]. Our model showed that the 
state-of-the-art object localization methods [22, 23] can 
be extended for timestamp localization and recognition, 
taking into account specifics of timestamp, and still 
maintaining a low computational complexity. 
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Table 1. Accuracy and computing time of timestamp localization for original video database 

Computing time 
(second) Method Resolution Total Nc Nm Nf Rr (%) Rp(%) 

μ σ 
704×576 1000 895 56 49 94.11 94.81 1.489 0.236 The method in 

[21] 1280×720 1000 912 41 47 95.70 95.10 2.368 0.443 
704×576 1000 976 13 11 98.69 98.89 0.985 0.152 Proposed 1280×720 1000 985 9 6 99.09 99.39 1.526 0.245 

Table 2. Accuracy and computing time of timestamp localization for synthetic video database 

Computing time 
(second) Method Total Nc Nm Nf Rr (%) Rp(%) 

μ σ 
The method in [21] 1000 876 68 56 92.80 93.99 1.356 0.338 

Proposed 1000 965 21 14 97.87 98.57 0.865 0.263 
Table 3. Accuracy and computing time of timestamp localization for TRECVID 2017 video database 

Computing time 
(second) Method Total Nc Nm Nf Rr (%) Rp(%) 

μ σ 
The method in [21] 1000 886 56 58 94.06 93.86 1.556 0.456 

Proposed 1000 981 11 8 98.89 99.19 1.085 0.358 
Table 4. Accuracy of timestamp recognition for original video database 

Method Resolution Total Nc Nm Nf Rr (%) Rp(%) 

704×576 1000 886 68 46 92.87 95.06 The method in 
[21] 1280×720 1000 908 45 47 95.28 95.08 

704×576 1000 971 15 14 98.48 98.58 Proposed 1280×720 1000 978 11 11 98.89 98.89 
Table 5. Accuracy of timestamp recognition for synthetic video database 

Method Total Nc Nm Nf Rr (%) Rp(%) 

The method in [21] 1000 873 75 52 92.09 94.38 
Proposed 1000 958 25 17 97.46 98.26 

Table 6. Accuracy of timestamp recognition for TRECVID 2017 video database 

Method Total Nc Nm Nf Rr (%) Rp(%) 

The method in [21] 1000 878 68 54 92.81 94.21 
Proposed 1000 965 19 16 98.07 98.37 

 

We also demonstrated the advantage of the joint 
training for the end-to-end task, by outperforming the ad-
hoc combination of the state-of-the-art localization and 
state-of-the-art recognition methods [25, 27], while 
exploiting the same training data. 

Last but not least, we showed that optimizing 
localization accuracy on timestamps bounding boxes 
might not improve performance of an end-to-end system, 
as there is not a clear link between how well a method fits 
the bounding boxes and how well a method reads 
timestamp. Future work includes extending the training 
set with more realistic effects, single characters and digits. 
This method can be improved the market competitiveness 

of panoramic video surveillance products. This 
technology can not only improve the economic ability of 
the enterprise, but also support the innovation and 
development of the enterprise. 
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