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Abstract 

Accurate detection of air bubbles boundaries is of crucial importance in determining the per-
formance and in the study of various gas/liquid two-phase flow systems. The main goal of this 
work is edge extraction of air bubbles rising in two-phase flow in real-time. To accomplish this, a 
fast algorithm based on local variance is improved and accelerated on the GPU to detect bubble 
contour. The proposed method is robust against changes of intensity contrast of edges and capable 
of giving high detection responses on low contrast edges. This algorithm is performed in two 
steps: in the first step, the local variance of each pixel is computed based on integral image, and 
then the resulting contours are thinned to generate the final edge map. We have implemented our 
algorithm on an NVIDIA GTX 780 GPU. The parallel implementation of our algorithm gives a 
speedup factor equal to 17x for high resolution images (1024×1024 pixels) compared to the serial 
implementation. Also, quantitative and qualitative assessments of our algorithm versus the most 
common edge detection algorithms from the literature were performed. A remarkable performance 
in terms of results accuracy and computation time is achieved with our algorithm. 
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Introduction 

Bubbly flows are encountered in various industrial 
equipment such as, chemical reactions, purification of 
liquids, drag reduction of ships, gas/liquid contactors in-
cluding bubble columns reactors, stirred tank reactors, 
evaporators, boilers and plate columns for absorption of 
gases and distillation. The knowledge of bubble charac-
teristics is of crucial importance in determining the per-
formance and in the study of various two-phase flow sys-
tems. The results of bubble dynamic are useful in extend-
ing the knowledge of bubble behavior in gas/liquid 
systems and in providing data to develop flow models. 
Bubble shape and dimensions play a key role in mass and 
heat transfer process between the dispersed and continu-
ous phases.  

Due to the action of hydrodynamic forces, the bubble 
shape would change. The interaction between rising bub-
bles and liquid determines the shape of the bubble and the 
extent of the disturbance in the surrounding fluid. Thus, 
instantaneous bubbles shapes, deformation of surfaces 
and sizes are very important because they reflect the dy-
namic changes of their pressures inside the bubbles and in 
the surrounding liquid. So, an improved understanding 
and instantaneous controlling of the flow around a rising 
gas bubble are required.  

In recent years, digital image processing techniques 
have garnered research attention as a mean to analyze 
two-phase flow parameters, such as bubble deformation, 
gas fraction, rising velocity and flow velocity [1] and ris-
ing trajectory. Particularly, many studies to measure the 
bubble size have been performed involving the digital 
image processing techniques combined with high-speed 
imaging [2 – 7]. 

One of the fundamental and initial stages of digital 
image processing and computer vision applications is the 
edge detection. Examples of such applications include da-
ta compression, image segmentation, pattern recognition 
and 3D image reconstruction, etc. The success of the ap-
plication depends on the quality of the resulted edge map, 
which is defined to consist of perfectly contiguous, well-
localized, and one-pixel wide edge segments. The speed 
of edge detection technique is also of crucial importance 
especially for real-time applications. Particularly, accu-
rate and rapid extraction of bubbles contours is an essen-
tial step for instant control of two-phase flow systems re-
quiring an accurate estimation of air bubble parameters.  

Today, the main challenge for developers in the field 
of image processing and computer vision is achieving 
high accuracy and real time performance. Most of image 
processing applications operate on higher resolution im-
ages, which requires intensive computation power and 
excessive computing time, especially if multiple tasks 
have to be performed on the image.  In addition, in most 
cases, a common computation is performed on all pixels 
of the image. This structure matches very well GPU’s 
SIMD architecture (single instruction multiple data) and 
can be effectively parallelized and accelerated on the 
GPU.  

Thus, many authors have exploited the programmable 
graphics processing units’ capabilities to improve the 
runtime of their algorithms. Numerous classic image pro-
cessing algorithms have been implemented on GPU with 
CUDA in [8]. OpenVIDIA project [9] has implemented 
diverse computer vision algorithms running on graphics 
processing units, using Cg, OpenGL and CUDA. Fur-
thermore, there are some works for GPU implementation 
of new volumetric rendering algorithms and magnetic 
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resonance (MR) image reconstruction [10]. Moreover, 
several fundamental graph algorithms have been imple-
mented on the GPU using CUDA in [11 – 13]. 

Despite the fact that image processing algorithms 
match very well the massively parallel architecture of the 
GPU, a wide number of applications failed to achieve 
significant speedup due to architectural constraints and 
hardware limitations of the modern graphic cards that 
should be considered when the algorithm is ported to 
GPU. 

The present study aims to develop an accurate edge 
detection algorithm performing in real-time, in order to 
extract edge map of air bubbles floating in static fluid in 
two-phase flow systems, for further processing later. 

Due to the specificity of the bubble images, where the 
gray levels on the bubble boundary are not constant, 
which makes its extraction from the background accurate-
ly difficult, an edge detection algorithm based on local 
variance computation using integral image is improved 
and accelerated on the GPU in this study. The local vari-
ance-based method is robust against changes of intensity 
contrast between air bubbles and image background, and 
is able to provide strong and consistent edge responses on 
the boundaries of low contrast bubbles. 

Our main contribution in this work is the efficient op-
timization techniques that have been introduced in our 
parallel implementation to reach real time execution. The 
proposed algorithm shows its efficiency when compared 
with those of state-of-the-art edge detection algorithms 
accelerated on the GPU. 

The remainder of this paper is structured as follows: a 
review of the edge detection algorithms from the litera-
ture is introduced in Section 1. A description of the pro-
posed algorithm is given in Section 2. Proposed in Sec-
tion 3 is its GPU implementation. Experimental results 
obtained with the proposed algorithm and comparisons 
with those of state of the art are shown in Section 4. Fi-
nally, conclusions are given in the last Section. 

1. Review of edge detection algorithms 
The edge detection task is a challenging problem, no-

tably in case of blurred, low contrast and noisy image. 
Thus, it was broadly discussed over the years. Based on 
traditional techniques, many recent papers have exploited 
the gradient to detect image edges [14 – 16]. Other ap-
proaches were inspired from the natural computing [17-
20], these techniques used neural network or membrane 
computing to detect edges. Type-2 fuzzy systems were 
also used to find image edges [16, 21], that can be com-
bined with Sobel detector to reach the same purpose [21]. 
Also, numerous other methods based on different tech-
niques have been developed, including the differentia-
tion-based methods [22, 23], machine learning methods 
[24, 25], the anisotropic diffusion or selective smoothing 
methods [26], and multiscale methods [27, 28]. 

Furthermore, the author in [29] proposed an edge de-
tector based on a local dimension of complex networks 
using the weighted combination of the Euclidean distance 
and gray-level similarity indices. More recently, the au-

thor in [30] proposed an approach based on Faber 
Schauder Wavelet and Otsu threshold. In this algorithm, 
the image is firstly smoothed with a bilateral filter de-
pending on noise estimation. Then, the Otsu’s method 
was applied to select the FSW extrema coefficients. Fi-
nally, the edge points are linked using a predictive linking 
algorithm to get the final edge map. 

Nevertheless, the most of the existent edge detectors 
fail in producing confident results due to the noise, the 
non-uniform scene illumination and the image blur. The 
success of an edge detection algorithm depends on its ca-
pability to produce good localized edge maps with mini-
mal effect of noise. Therefore, there is always a trade-off 
in the edge detection technique between extracting the in-
formation and suppressing the noise. Common edge de-
tectors overcome noise by first smoothing images, typi-
cally with a Gaussian kernel. Such smoothing indeed re-
duces the noise, but may blur and weaken the contrast 
across edges, or even worse, blend adjacent edges. 

There are many improved Canny-based edge detec-
tion techniques, such as the EGT method (Estimated 
Ground Truth) that uses Canny at multiple scales to en-
hance true edges and eliminate false edges. EGT is more 
robust to noise compared to the conventional Canny op-
erator but it is slow and impractical [31]. Also, the SMC 
technique (Scale Multiplication of Canny) uses multi-
scale in order to be more resistant to noise. The accuracy 
and the speed of this method are determined by the num-
ber of scales and their values. Edge detector based on 
nonlinear operator such as Nonlinear Filtering Scheme 
(NLFS) [32, 33] is suitable to eliminate impulsive noises 
like salt & pepper noise. Nevertheless, this approach suf-
fers from slight dislocation of the contours as it tends to 
be bias to light area and may create non-continuous con-
tours. 

Using diverse type of filters or transformations like 
morphological analysis [34], Hilbert transform [35], and 
multiple radon or beamlet transform [36] is not suitable to 
handle noise. Indeed, excessive use of these transfor-
mations and filters or the use of large scales could reduce 
their ability to detect short edges and create non-
continuous edges.   

Other works focused on thresholding techniques to 
handle noise like adaptive filter and type-2 fuzzy filter 
with OTSU adaptive thresholding [37]. Using different 
types of thresholding techniques is not suitable to deal 
with some types of noise like speckle and salt & pepper 
noises. Indeed, selecting only the appropriate threshold 
removes the high-contrast noisy edges created by speckle 
and salt & pepper noises.   

Finally, edge detector based on machine learning [38, 
39] is just making the problem more complicated and not 
practical. In addition, the performance is not guaranteed 
as this type of edge detection depends heavily on the 
training samples.   

2. Edge detection based on local variance 

Generally, the measurement of bubbly flow parame-
ters with digital image processing techniques starts by de-
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tecting edge of bubbles, and then uses edge map for fur-
ther high-level processing. Most of these techniques use 
preprocessing approaches such as filtering to remove 
noise and thresholding to low-level feature extraction. 
Nevertheless, there are many limitations in the perfor-
mance of these approaches. The performance of thresh-
olding approaches is limited by the bubble size, noise, 
contrast, intensities difference between bubbles and the 
background, and variances of bubble and background. 
Minimizing noise by filtering operations results in blurred 
and distorted boundaries since both edges and noise con-
tain high-frequency contents. 

Due to these difficulties, preprocessing step must be 
applied in such a way as to not remove or distort the sig-
nal of interest, and the ideal solution is an approach that 
avoids the preprocessing step entirely. 

The proposed algorithm is based on the exploitation of 
raw images in order to preserve all features details until the 
final phase of treatment. This edge detection technique is 
performed on two main steps: in the first step, the local vari-
ance of each pixel is computed based on integral image in 
order to improve computation time, and then the resulting 
contours are thinning to generate the final edge map. The 
principles of the two steps are described below. 

2.1. Variance calculation 

The variance of the original image (in grayscale) is 
done on small window D centered on the pixel of coordi-
nates (x, y) according to the following expression: 

2 2
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( )i jx y
i j D
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   , (1)  

where  is the mean value of pixels intensities in the 
window D, and I(i,j) is the intensity of the pixel (x, y) to be 
processed in the input image. 

The obtained result is the variance image representing 
the different contours of the detected patterns and pre-
serving all the useful information. 

According to Eq. 1, the local variance of a pixel is 
based on the average value computation of the window 
centered at this pixel. Thus, the number of summation 
operation, needed to the mean value calculation, will in-
crease with the window size and consequently the execu-
tion time will increase. For every pixel in the input im-
age, (4×w 2) arithmetic operations will be performed to 
generate the corresponding pixel variance value (where w 
is the size of the window along an axis). Consequently, 
the computational complexity of the variance computa-
tion of an image size of (N × M) pixels will be in the order 
of O (4×w 2×N×M). 

To eliminate this dependency and improve computa-
tion time, the integral image is used to compute the mean 
and variance of the processed image. 

The variance of any region D of an image I using in-
tegral image approach can be calculated using the follow-
ing formula: 
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where I' and I'' are respectively, the integral image and 
the squared integral image of the input image I and n is 
the number of window D pixels. 

2.2. Contour thinning 

The contours generated by the first step have a certain 
thickness (greater than 1 pixel). Thus, a thinning phase is 
necessary to refine it. The local variance of a region across 
the edge of an image is bigger than those regions where no 
edge is crossed. Thus, the center pixel (x, y) of that region 
is an edge pixel. In this step, all the columns of the vari-
ance image are processed, in increasing and decreasing or-
der, by eliminating all pixels having a smaller variance 
value than their successor or predecessor, respectively. The 
obtained result is a set of peaks corresponding to the de-
tected local maxima. These peaks are the final contours of 
fine thickness. Fig. 1 illustrates the result of the edge detec-
tion algorithm on a real air bubbles image. 

(a)    (b)    (c)  
Fig. 1. Results of applying the edge detection method to real 

image of air bubbles: (a) original image, (b) transformed image 
and (c) contour image (the quality of contours may be 

deteriorated due to color inversion) 

3. GPU implementation 

In the following, we detail the parallel implementation 
on the GPU of the edge detection algorithm. The algo-
rithm is bifurcated into three principal steps: Integral and 
squared integral images computation, variance value cal-
culation and contour thinning. In the integral image com-
putation step, (5×N×M) arithmetic operations are required 
for an image size of (N×M pixels). Consequently, the 
computational complexity of this step will be in the order 
of O (5×N×M). In the variance calculation step, for every 
pixel in the image 10 arithmetic operations will be per-
formed to generate the corresponding pixel variance val-
ue. Thus, the computational complexity of this step will 
be in the order of O (10×N×M). Finally, for the thinning 
step each pixel in the variance image performs 2 compar-
isons to generate the final fine contour. Hence, the total 
complexity of this step will be in the order of O (2×N×M). 

Therefore, the global time complexity of the algorithm 
will be in the order of O (17×N×M). Since, our main goal is 
the acceleration of the computation time to reach real time, 
the three steps of the algorithm are transferred to the GPU, 
which we implemented three kernels, Integral_kernel, Var-
iance_kernel and Thinning_kernel. 

3.1. Integral_kernel 

The value at any location (x, y) in the integral image is 
the sum of all the pixels intensities above and to the left 
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of (x, y), inclusive. This can be expressed mathematically 
as follow: 

( , ) ( , )
,

x y x y
x x y y

I I  
  

   , (3) 

where I' and I are the values of the integral image and the 
input image respectively. 

Equation (3) has potential for parallel computation, 
using the following recursive equations: 
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The first stage computes the cumulative row sum S at 
a position (x, y) in the image and forwards the sum to the 
second stage for computation of the integral image I'(x, y) 
value at that position. 

This kernel is launched with a number of threads 
equal to the number of rows of the input image to be pro-
cessed. These threads are arranged in one-dimensional 
thread blocks. Thus, the total number of thread blocks is 
the size of the input image divided by the number of 
threads. The computation of the integral image is per-
formed in two steps: we assigned one thread to compute 
the cumulative sum of one row. Once all threads achieved 

calculation, each one of them performs the integral image 

value computation for the column assigned to it.  
The following algorithm (1) illustrates the integral 

image computation: the input image is scanned, and for 
each row the cumulative sum is computed. Then, the in-
tegral image is calculated for each column. Finally, the 
results are stored in the global memory. Each thread 
computes its corresponding row index i, as: 

i = (blockIdx.x + threadIdx.x × gridDim.x) × N,  

where gridDim.x is the number of blocks in the grid and 
N the width of the input image. 

Algorithm 1: Integral_kernel 

Input: the input image (I) and its height and width M, N 
Output: the Integral image (I')  
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N; 
2: for k ← 0 to (N – 1) do // sweep the row pixels 
3: I(i+k+1)

 ← I(i+k)
 + I(i+k+1); // compute the cumulative sum  

for one row 
4: End; 
5: for k ← 0 to (M – 1) do // sweep the column pixels 
6: I(i+(k+1)×N)

 ← I(i+k×N)
 + I(i+(k+1)×N);  // compute the integral 

image for one column  
7: I'(i+(k+1)×N)

 ← I(i+(k+1)×N); // Store the integral image value  
in the global memory 

8: End; 

3.2. Variance_kernel 

For this kernel, we mapped one thread to each pixel of 
the integral image returned by the Integral_kernel . 
(N×M) threads are generated to process (N×M) pixels. 
These threads are grouped in one-dimensional thread 
blocks. The following algorithm (2) illustrates the vari-
ance value computation: the integral and the squared in-
tegral images are scanned, and for each pixel the corre-

sponding variance is computed. Then, the variance value 
is stored in the global memory. Each thread computes its 
corresponding pixel index i, as:  

i = blockIdx.x + threadIdx.x × gridDim.x,  

where gridDim.x is the number of blocks in the grid. 

Algorithm 2: Variance_kernel 

Input: the integral image (I' ), the squared integral image 
(I'' ), N and w  

Output: the variance image (V) 
1: i ← blockIdx.x + threadIdx.x × gridDim.x; 
2: Fetch I'(i+(w+1)+(w+1)×N), I'(i–w–w×N), I'(i+(w+1)–w×N) 

and I'(i–w+(w+1)×N) from the global memory; //the 4 cor-
ners of the window in the in-
tegral image 

3: Fetch I''(i+(w+1)+(w+1)×N), I''(i–w–w×N), I''(i+(w+1)–w×N)  
and I''(i–w+(w+1)×N) from the global memory; // the 4 cor-

ners of the window in the 
squared integral image 

4: Compute vi using formula (3); // computing the variance 
value of the pixel i 

5: Vi ← vi; // Store the variance value in the global memory 

3.3. Thinning_kernel 

The Thinning_kernel implementation takes a different 
approach from that of the Variance_kernel. A single 
thread processes an entire column of the variance image. 
Thus, the total number of threads in the grid corresponds 
to the number of columns (N) of the variance image (V). 
The threads sweep the columns in the ascending and in 
the decreasing order. Each thread compares the intensity 
of the tested pixel in the column assigned to it with that 
of its successor or predecessor according to the direction. 
If lower, it will be rejected. Else, it will be stored in the 
global memory as an edge pixel. The following algorithm 
(3) illustrates the Thinning_kernel procedure. Each thread 
computes its corresponding pixel index i, as:  

i = (blockIdx.x + threadIdx.x × gridDim.x) × N. 

Algorithm 3: Thinning_kernel 

Input: the variance image (V), and its width N  
Output: the edge image (E) 
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N; 
2: for k ← 0 to (N – 2) do // sweep the column in the ascend-

ing order 
3:       if (V(i+k)

 < V(i+k+1))  // compare each pixel in the column 
with its successor 

4:              V(i+k)
 ← 0;    

5: End; 
6: for k ← (N – 1) to 1 do // sweep the column in the descend-

ing order 
7:       if (V(i+k)

 < V(i+k–1))  // compare each pixel in the column 
with its predecessor 

8:              V(i+k)
 ← 0; 

9:       E(i+k)
 ← V(i+k); // Store the edge pixel value in the global 

memory 
10: End; 

We used CUDA streams to further optimize this kernel.  
The Thinning_kernel can be divided into two tasks 

independent each from the other (sweeping the columns 
of the image in the ascending order firstly and in the de-
creasing order secondly).   
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Thus, we implemented two sub-kernels (Thin-
ning_kernel_A and Thinning_kernel_D), one for each di-
rection, with the same configuration of threads and blocs 
as the original implementation and we created two 
streams to launch these sub-kernels concurrently. A better 
performance is given by this asynchronous implementa-
tion compared to the basic one. The following algorithms 
(4 and 5) illustrate the two sub-kernels procedures. 

Algorithm 4: Thinning_kernel_A 

Input: the variance image (V), and its width N  
Output: the edge image (E) 
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N; 
2: for k ← 0 to (N – 2) do // sweep the column in the ascend-

ing order 
3:       if (V(i+k)

 < V(i+k+1))  // compare each pixel in the column 
with its successor 

4:           V(i+k)
 ← 0;    

9:    E(i+k)
 ← V(i+k); // Store the edge pixel value in the global 

memory 
10: End; 

Algorithm 5: Thinning_kernel_B 

Input: the variance image (V), and its width N  
Output: the edge image (E) 
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N; 
2: for k ← (N – 1) to 1 do  // sweep the column in the descend-

ing order 
3:       if (V(i+k)

 < V(i+k–1))  // compare each pixel in the column 
with its predecessor 

4:           V(i+k)
 ← 0; 

9:       E(i+k)
 ← V(i+k);  // Store the edge pixel value in the global 

memory 
10: End;  

4. Experimental results and analysis 

The aim of these experiments is to confirm that with 
the capabilities of the programmable GPU, the speed of our 
algorithm will be considerably improved and reached real 
time execution. For this purpose, the computational per-
formance of the GPU implementation with different sizes 
of images ranging from (128×128) to (1024×1024) pixels 
was compared to the CPU implementation. We used a 
computer equipped with an Intel® Core ™ i7-3770 CPU 
performing at 3.4 GHZ and 16 GB RAM. Also, it is 
equipped with an NVIDIA GeForce GTX 780 GPU. A 
detailed description of the used graphic card, in this work, 
is illustrated in Table 1. For the implementation of the al-
gorithm we used the vs2015 configured with OpenCV 
3.0.0, and the CUDA 6.5. 

4.1. GPU implementation complexity analysis 

From Section 3, the overall computational complexity 
of the edge detection algorithm is in the order of 
O (17×N×M) to process an image size of (N×M) pixels. In 
the Integral_kernel, N threads are launched to carry out 
computations, where each thread performs (2×M) opera-
tions. Hence, the computational complexity of one thread 
is O (2×M). The Variance_kernel is launched with (N×M) 

threads and each one performs 10 operations. Thus, the 
computational complexity of a single thread is O (10). 
The Thinning_kernel is launched with a total of (N) 
threads and each thread performs 2 operations. Hence, the 
computational complexity of each thread is O (2×M).  

Table 1. GPU hardware specification 

Architecture Kepler GK110 
Compute capabilities 3.5 
Base clock 863 MHZ 
Cores CUDA 2304 
Number of Streaming Multiprocessor 12 
Maximum shared memory per SM 48KB 
Maximum threads per SM 2048 
Maximum blocks per SM 16 
Maximum threads per block 1024 

In practice, the execution time depends on the maxi-
mum number of threads that can be executed simultane-
ously by the GPU. In our case, a total of 2048 threads can 
be launched by each SM. Thus, a total of (2048×12) 
threads can be executed concurrently on the 12 SM of the 
GPU. Therefore, the total computational complexity of 
the edge detection algorithm is the sum of those of the 
three kernels divided by the total number of executed 
threads at a time, which is in the order of 
O ((10 + 6 × M) / (2048 × 12)) and can be considered as 
O (M / (2 × 2048)).  

4.2. Optimization of execution configuration 

To achieve best performance, a serie of tests by varying 
the number of threads per block is carried out to determine 
the appropriate configuration that satisfies our real-time con-
straint, taking into account the resource usage of an individ-
ual thread. In this experiment, a set of tests on 300 images 
with different sizes ranging from (128×128) to (1024×1024) 
pixels, under several practical conditions was performed. For 
each test, 200 runs were carried out and the average execu-
tion time is reported for each kernel. Tables 2 – 4 illustrate 
the obtained results for each kernel. 

We can see that the best run time for the Inte-
gral_kernel, the Variance_kernel and the Thinning_kernel 
is achieved when the number of threads is equal to 256, 
512 et 32, respectively. This can be explained by the full 
use of blocks provided by the SM in these cases, which 
leads to maximize resources and consequently speed up 
execution time. 

4.3. Asynchronous execution assessment 

In this section, we evaluate the effectiveness of the 
asynchronous implementation of the Thinning_kernel.  
Table 5 illustrates the execution times for the two imple-
mentations with different image sizes. 

This Table shows that for all image sizes, the asyn-
chronous implementation of the Thinning_kernel outper-
forms the basic implementation with a speedup factor ap-
proximately equal to 1.5×. For example, the run time for 
an image size of (1024×1024) pixels is decreased from 
5.04 ms to 3.34 ms. 
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Table 2. Average execution times (µs) for the Integral_kernel 

Image sizes 
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024 threads 

128×128 467.33 446.51 422.49 - - - 
256×256 1033 937.14 889.07 884.66 - - 
512×512 2460 2070 1880 1860 2260 - 

1024×1024 5960 4930 4170 3940 4710 7680 

Table 3. Average execution times (µs) for the Variance_kernel 

Image sizes 
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024 

threads 
128×128 43.10 40.28 36.41 42.62 40.57 52.22 
256×256 172.54 138.43 142.50 141.40 137.69 170.78 
512×512 648.05 534.13 547 546.39 534.1 619.99 

1024×1024 2520 2290 2170 2160 2100 2390 

Table 4. Average execution times (µs) for the Thinning_kernel 

Image sizes 
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024 

threads 
128×128 378.23 379.69 380.68 - - - 
256×256 802.45 809.17 809.04 856.27 - - 
512×512 1610 1620 1620 1700 2350 - 

1024×1024 3340 3380 3345 3390 4690 8970 
 

Table 5. Execution times (µs) for the two Thinning_kernel 
implementations with different image sizes 

Image sizes 
(pixels) Basic kernel Asynchronous 

kernel 
128×128 598 378 
256×256 1280 802 
512×512 2530 1610 

1024×1024 5046 3340 

4.4. Overall performance assessment 

Table 6 illustrates the execution times and speedups 
for the CPU and GPU implementations of our edge detec-
tion algorithm for different image sizes. It is clear that the 
GPU approach outperforms the CPU implementation. We 
can see that considerable gains are achieved with the 
GPU implementation with respect to the serial implemen-
tation. For instance, a gain factor around 17× is reached 
with an image size of (1024×1024) pixels. 

4.5. Comparison with state of the art 

In addition, to further prove the effectiveness of the 
proposed algorithm, we compared it with those of state-
of-the art in terms of execution times and results accura-
cy. The proposed method in this study is compared to the 

most commonly edge detection methods existing in the 
literature Sobel, Robert, Prewitt and Canny in terms of 
accuracy. Examples of results on 2 images are shown in 
Fig.2. From the qualitative results shown in this Figure, 
we can see that clear and continuous edges are success-
fully identified in all images with our algorithm. Despite 
the specificity of the bubble images, where the gray lev-
els on the bubble boundary are not constant, which makes 
its extraction from the background difficult, a remarkably 
performance of our algorithm can be seen compared to 
the common methods which are failed to extract correctly 
the bubbles edges. Our algorithm can accurately extract 
edges even if images contain a non-uniform background 
and an obscure boundary. 

Table 6. Execution times (msec) on CPU and GPU  
of the edge detection algorithm and speedup factors 

Image sizes 
(pixels) CPU GPU Speedup 

128×128 104 1.259 82.6 
256×256 130 2.763 47.05 
512×512 153 5.864 26.09 

1024×1024 233 13.320 17.49 
 

  (a)      (b)      (c)      (d)      (e)       (f)  

  (g)      (h)       (i)       (j)      (k)       (l)  

Fig. 2. Edge detection results comparison with state of the art: (a, g) original images, (b, h) Sobel, (c, i) Robert, (d, j) Prewitt, (e, k) 
Canny and (f, l) our algorithm (the quality of contours may be deteriorated due to color inversion) 
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(a)  (b)  (c)  (d)  

(e)  (f)  (g)  (h)  

Fig. 3. Edge detection results: comparison of our algorithm with Canny operator: (a, e) original images, (b, f) Canny; Tresh = 0.3, 
(c, g) Canny; Tresh = 0.7 and (d, h) our algorithm (the quality of contours may be deteriorated due to color inversion) 

In a second test we compared the performance of our 
algorithm versus Canny (since it gave the better results 
compared to the other commonly edge detectors, see 
Fig. 2). The test is performed on real images that contain 
bubbles with different sizes. Fig. 3 illustrates the obtained 
results on two images. By visual perception, we can con-
clude clearly that Canny operator give low quality edge 
maps relative to our algorithm. If the threshold value is 
low, the Canny output will outline the small bubbles, but 
many false edges are detected. On the contrary, if the 
threshold value is high, small bubbles (surrounded by a 
rectangle in the original image) will be discarded. 

Also, a quantitative assessment of our edge detector 
and the four detectors from the state of the art based on 
Pratt’s Figure of Merit (FOM) metric is performed. The 
FOM metric measures the deviation of a detected edge 
point from the ideal edge and it is defined as follow: 

2 '
1

1 1

max( , ) 1 ( )

dN

d i k

FOM
N N d k


  , (5) 

where Ni is the number of the edge points on the ideal 
edge, Nd is the number of the detected edge points, d (k) is 
the distance between the kth detected edge pixel and the 
ideal edge,  is the scaling constant (normally set at 1/9). 
In all cases, FOM ranges from 0 to 1, where 1 corre-
sponds to the perfect match between the ideal edge and 
the detected edge. 

In this experiment, the test is performed on the same 
data set used in the previous experiments. Fig. 4 illus-
trates an example of 3 images from this data set. The 
mean values of FOM for the different edge detectors are 
summarized in Table 7.  

       
Fig. 4. Example of test images for the FOM assessment 

Table 7. Performance evaluation using FOM metric 

 FOM 
Robert 0.2095 
Sobel 0.2031 
Prewitt 0.2018 
Canny 0.2182 
Our algorithm 0.3095 

Based on these results we can easily conclude that our 
edge detector achieves the best value which is nearest to 
the ratio of one according to the Pratt measure. 

To value the computational performance of our meth-
od, its execution times on 3 image sizes are compared 
with those of Robert and Canny edge detection tech-
niques accelerated on the GPU in [40] and [41], respec-
tively. A remarkably performance is achieved with our 
algorithm. The results are presented in Table 8.  

Table 8. Execution times (msec) comparison 

Image sizes 
(pixels) Robert [40] Canny [41] Our algo-

rithm 

256×256 0.997 6.50 2.763 
512×512 7.271 10.90 5.864 

1024×1024 56.717 26.05 13.320 

Conclusion 

In this paper, an effective method for accurate and re-
al time edge detection based on the local variance of the 
input image was proposed. This algorithm is performed in 
two steps: in the first step, the local variance of each pixel 
is computed based on integral image, and then the result-
ing contours are thinning to generate the final edge map. 
Different implementations on Intel® core ™ i7-3770 
CPU and Nvidia GPU Kepler architecture are tested us-
ing a set of synthetic and real images with different sizes. 
We have used CUDA to implement the algorithm on an 
NVIDIA GTX780 GPU, and compared its performances 
to the CPU implementation. Acceleration factors between 
17× and 82× with different image sizes ranging from 
(128×128) to (1024×1024) pixels, have been reached 
with the GPU implementation compared to the CPU. Al-
so, our algorithm was compared to the most commonly 
edge detection techniques existing in the literature, Rob-
ert and Canny in terms of results accuracy and computa-
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tion time performance. A remarkably performance is 
reached with our algorithm. Our method is robust against 
changes of intensity contrast of edges and capable of giv-
ing high detection responses on low contrast edges. With 
such performances, accurately extraction of air bubbles 
boundaries in real-time becomes possible. 
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