
GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

446 Компьютерная оптика, 2019, том 43, №3

GPU acceleration of edge detection algorithm based on local variance
and integral image: application to air bubbles boundaries extraction

Afef Bettaieb 1, Nabila Filali 1, Taoufik Filali 1, Habib Ben Aissia 1

1 Laboratory of Metrology and Energetic Systems, National School of Engineers of Monastir, University of Monastir,
Monastir, Tunisia

Abstract

Accurate detection of air bubbles boundaries is of crucial importance in determining the per-
formance and in the study of various gas/liquid two-phase flow systems. The main goal of this
work is edge extraction of air bubbles rising in two-phase flow in real-time. To accomplish this, a
fast algorithm based on local variance is improved and accelerated on the GPU to detect bubble
contour. The proposed method is robust against changes of intensity contrast of edges and capable
of giving high detection responses on low contrast edges. This algorithm is performed in two
steps: in the first step, the local variance of each pixel is computed based on integral image, and
then the resulting contours are thinned to generate the final edge map. We have implemented our
algorithm on an NVIDIA GTX 780 GPU. The parallel implementation of our algorithm gives a
speedup factor equal to 17x for high resolution images (1024×1024 pixels) compared to the serial
implementation. Also, quantitative and qualitative assessments of our algorithm versus the most
common edge detection algorithms from the literature were performed. A remarkable performance
in terms of results accuracy and computation time is achieved with our algorithm.

Keywords: GPU; CUDA; real-time; digital image processing; edge detection; air bubbles.
Citation: Bettaieb A, Filali N, Filali T, Ben Aissia H. GPU acceleration of edge detection algo-

rithm based on local variance and integral image: application to air bubbles boundaries extraction.
Computer Optics 2019; 43(3): 446-454. DOI: 10.18287/2412-6179-2019-43-3-446-454.

Introduction

Bubbly flows are encountered in various industrial
equipment such as, chemical reactions, purification of
liquids, drag reduction of ships, gas/liquid contactors in-
cluding bubble columns reactors, stirred tank reactors,
evaporators, boilers and plate columns for absorption of
gases and distillation. The knowledge of bubble charac-
teristics is of crucial importance in determining the per-
formance and in the study of various two-phase flow sys-
tems. The results of bubble dynamic are useful in extend-
ing the knowledge of bubble behavior in gas/liquid
systems and in providing data to develop flow models.
Bubble shape and dimensions play a key role in mass and
heat transfer process between the dispersed and continu-
ous phases.

Due to the action of hydrodynamic forces, the bubble
shape would change. The interaction between rising bub-
bles and liquid determines the shape of the bubble and the
extent of the disturbance in the surrounding fluid. Thus,
instantaneous bubbles shapes, deformation of surfaces
and sizes are very important because they reflect the dy-
namic changes of their pressures inside the bubbles and in
the surrounding liquid. So, an improved understanding
and instantaneous controlling of the flow around a rising
gas bubble are required.

In recent years, digital image processing techniques
have garnered research attention as a mean to analyze
two-phase flow parameters, such as bubble deformation,
gas fraction, rising velocity and flow velocity [1] and ris-
ing trajectory. Particularly, many studies to measure the
bubble size have been performed involving the digital
image processing techniques combined with high-speed
imaging [2 – 7].

One of the fundamental and initial stages of digital
image processing and computer vision applications is the
edge detection. Examples of such applications include da-
ta compression, image segmentation, pattern recognition
and 3D image reconstruction, etc. The success of the ap-
plication depends on the quality of the resulted edge map,
which is defined to consist of perfectly contiguous, well-
localized, and one-pixel wide edge segments. The speed
of edge detection technique is also of crucial importance
especially for real-time applications. Particularly, accu-
rate and rapid extraction of bubbles contours is an essen-
tial step for instant control of two-phase flow systems re-
quiring an accurate estimation of air bubble parameters.

Today, the main challenge for developers in the field
of image processing and computer vision is achieving
high accuracy and real time performance. Most of image
processing applications operate on higher resolution im-
ages, which requires intensive computation power and
excessive computing time, especially if multiple tasks
have to be performed on the image. In addition, in most
cases, a common computation is performed on all pixels
of the image. This structure matches very well GPU’s
SIMD architecture (single instruction multiple data) and
can be effectively parallelized and accelerated on the
GPU.

Thus, many authors have exploited the programmable
graphics processing units’ capabilities to improve the
runtime of their algorithms. Numerous classic image pro-
cessing algorithms have been implemented on GPU with
CUDA in [8]. OpenVIDIA project [9] has implemented
diverse computer vision algorithms running on graphics
processing units, using Cg, OpenGL and CUDA. Fur-
thermore, there are some works for GPU implementation
of new volumetric rendering algorithms and magnetic

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

Компьютерная оптика, 2019, том 43, №3 447

resonance (MR) image reconstruction [10]. Moreover,
several fundamental graph algorithms have been imple-
mented on the GPU using CUDA in [11 – 13].

Despite the fact that image processing algorithms
match very well the massively parallel architecture of the
GPU, a wide number of applications failed to achieve
significant speedup due to architectural constraints and
hardware limitations of the modern graphic cards that
should be considered when the algorithm is ported to
GPU.

The present study aims to develop an accurate edge
detection algorithm performing in real-time, in order to
extract edge map of air bubbles floating in static fluid in
two-phase flow systems, for further processing later.

Due to the specificity of the bubble images, where the
gray levels on the bubble boundary are not constant,
which makes its extraction from the background accurate-
ly difficult, an edge detection algorithm based on local
variance computation using integral image is improved
and accelerated on the GPU in this study. The local vari-
ance-based method is robust against changes of intensity
contrast between air bubbles and image background, and
is able to provide strong and consistent edge responses on
the boundaries of low contrast bubbles.

Our main contribution in this work is the efficient op-
timization techniques that have been introduced in our
parallel implementation to reach real time execution. The
proposed algorithm shows its efficiency when compared
with those of state-of-the-art edge detection algorithms
accelerated on the GPU.

The remainder of this paper is structured as follows: a
review of the edge detection algorithms from the litera-
ture is introduced in Section 1. A description of the pro-
posed algorithm is given in Section 2. Proposed in Sec-
tion 3 is its GPU implementation. Experimental results
obtained with the proposed algorithm and comparisons
with those of state of the art are shown in Section 4. Fi-
nally, conclusions are given in the last Section.

1. Review of edge detection algorithms
The edge detection task is a challenging problem, no-

tably in case of blurred, low contrast and noisy image.
Thus, it was broadly discussed over the years. Based on
traditional techniques, many recent papers have exploited
the gradient to detect image edges [14 – 16]. Other ap-
proaches were inspired from the natural computing [17-
20], these techniques used neural network or membrane
computing to detect edges. Type-2 fuzzy systems were
also used to find image edges [16, 21], that can be com-
bined with Sobel detector to reach the same purpose [21].
Also, numerous other methods based on different tech-
niques have been developed, including the differentia-
tion-based methods [22, 23], machine learning methods
[24, 25], the anisotropic diffusion or selective smoothing
methods [26], and multiscale methods [27, 28].

Furthermore, the author in [29] proposed an edge de-
tector based on a local dimension of complex networks
using the weighted combination of the Euclidean distance
and gray-level similarity indices. More recently, the au-

thor in [30] proposed an approach based on Faber
Schauder Wavelet and Otsu threshold. In this algorithm,
the image is firstly smoothed with a bilateral filter de-
pending on noise estimation. Then, the Otsu’s method
was applied to select the FSW extrema coefficients. Fi-
nally, the edge points are linked using a predictive linking
algorithm to get the final edge map.

Nevertheless, the most of the existent edge detectors
fail in producing confident results due to the noise, the
non-uniform scene illumination and the image blur. The
success of an edge detection algorithm depends on its ca-
pability to produce good localized edge maps with mini-
mal effect of noise. Therefore, there is always a trade-off
in the edge detection technique between extracting the in-
formation and suppressing the noise. Common edge de-
tectors overcome noise by first smoothing images, typi-
cally with a Gaussian kernel. Such smoothing indeed re-
duces the noise, but may blur and weaken the contrast
across edges, or even worse, blend adjacent edges.

There are many improved Canny-based edge detec-
tion techniques, such as the EGT method (Estimated
Ground Truth) that uses Canny at multiple scales to en-
hance true edges and eliminate false edges. EGT is more
robust to noise compared to the conventional Canny op-
erator but it is slow and impractical [31]. Also, the SMC
technique (Scale Multiplication of Canny) uses multi-
scale in order to be more resistant to noise. The accuracy
and the speed of this method are determined by the num-
ber of scales and their values. Edge detector based on
nonlinear operator such as Nonlinear Filtering Scheme
(NLFS) [32, 33] is suitable to eliminate impulsive noises
like salt & pepper noise. Nevertheless, this approach suf-
fers from slight dislocation of the contours as it tends to
be bias to light area and may create non-continuous con-
tours.

Using diverse type of filters or transformations like
morphological analysis [34], Hilbert transform [35], and
multiple radon or beamlet transform [36] is not suitable to
handle noise. Indeed, excessive use of these transfor-
mations and filters or the use of large scales could reduce
their ability to detect short edges and create non-
continuous edges.

Other works focused on thresholding techniques to
handle noise like adaptive filter and type-2 fuzzy filter
with OTSU adaptive thresholding [37]. Using different
types of thresholding techniques is not suitable to deal
with some types of noise like speckle and salt & pepper
noises. Indeed, selecting only the appropriate threshold
removes the high-contrast noisy edges created by speckle
and salt & pepper noises.

Finally, edge detector based on machine learning [38,
39] is just making the problem more complicated and not
practical. In addition, the performance is not guaranteed
as this type of edge detection depends heavily on the
training samples.

2. Edge detection based on local variance

Generally, the measurement of bubbly flow parame-
ters with digital image processing techniques starts by de-

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

448 Компьютерная оптика, 2019, том 43, №3

tecting edge of bubbles, and then uses edge map for fur-
ther high-level processing. Most of these techniques use
preprocessing approaches such as filtering to remove
noise and thresholding to low-level feature extraction.
Nevertheless, there are many limitations in the perfor-
mance of these approaches. The performance of thresh-
olding approaches is limited by the bubble size, noise,
contrast, intensities difference between bubbles and the
background, and variances of bubble and background.
Minimizing noise by filtering operations results in blurred
and distorted boundaries since both edges and noise con-
tain high-frequency contents.

Due to these difficulties, preprocessing step must be
applied in such a way as to not remove or distort the sig-
nal of interest, and the ideal solution is an approach that
avoids the preprocessing step entirely.

The proposed algorithm is based on the exploitation of
raw images in order to preserve all features details until the
final phase of treatment. This edge detection technique is
performed on two main steps: in the first step, the local vari-
ance of each pixel is computed based on integral image in
order to improve computation time, and then the resulting
contours are thinning to generate the final edge map. The
principles of the two steps are described below.

2.1. Variance calculation

The variance of the original image (in grayscale) is
done on small window D centered on the pixel of coordi-
nates (x, y) according to the following expression:

2 2
(,)(,)

(,)

()i jx y
i j D

I


   , (1)

where  is the mean value of pixels intensities in the
window D, and I(i,j) is the intensity of the pixel (x, y) to be
processed in the input image.

The obtained result is the variance image representing
the different contours of the detected patterns and pre-
serving all the useful information.

According to Eq. 1, the local variance of a pixel is
based on the average value computation of the window
centered at this pixel. Thus, the number of summation
operation, needed to the mean value calculation, will in-
crease with the window size and consequently the execu-
tion time will increase. For every pixel in the input im-
age, (4×w 2) arithmetic operations will be performed to
generate the corresponding pixel variance value (where w
is the size of the window along an axis). Consequently,
the computational complexity of the variance computa-
tion of an image size of (N × M) pixels will be in the order
of O (4×w 2×N×M).

To eliminate this dependency and improve computa-
tion time, the integral image is used to compute the mean
and variance of the processed image.

The variance of any region D of an image I using in-
tegral image approach can be calculated using the follow-
ing formula:

   
2

2
(,)

1 1
x y I D I D

n n
      
 

, (2)

where I' and I'' are respectively, the integral image and
the squared integral image of the input image I and n is
the number of window D pixels.

2.2. Contour thinning

The contours generated by the first step have a certain
thickness (greater than 1 pixel). Thus, a thinning phase is
necessary to refine it. The local variance of a region across
the edge of an image is bigger than those regions where no
edge is crossed. Thus, the center pixel (x, y) of that region
is an edge pixel. In this step, all the columns of the vari-
ance image are processed, in increasing and decreasing or-
der, by eliminating all pixels having a smaller variance
value than their successor or predecessor, respectively. The
obtained result is a set of peaks corresponding to the de-
tected local maxima. These peaks are the final contours of
fine thickness. Fig. 1 illustrates the result of the edge detec-
tion algorithm on a real air bubbles image.

(a) (b) (c)
Fig. 1. Results of applying the edge detection method to real

image of air bubbles: (a) original image, (b) transformed image
and (c) contour image (the quality of contours may be

deteriorated due to color inversion)

3. GPU implementation

In the following, we detail the parallel implementation
on the GPU of the edge detection algorithm. The algo-
rithm is bifurcated into three principal steps: Integral and
squared integral images computation, variance value cal-
culation and contour thinning. In the integral image com-
putation step, (5×N×M) arithmetic operations are required
for an image size of (N×M pixels). Consequently, the
computational complexity of this step will be in the order
of O (5×N×M). In the variance calculation step, for every
pixel in the image 10 arithmetic operations will be per-
formed to generate the corresponding pixel variance val-
ue. Thus, the computational complexity of this step will
be in the order of O (10×N×M). Finally, for the thinning
step each pixel in the variance image performs 2 compar-
isons to generate the final fine contour. Hence, the total
complexity of this step will be in the order of O (2×N×M).

Therefore, the global time complexity of the algorithm
will be in the order of O (17×N×M). Since, our main goal is
the acceleration of the computation time to reach real time,
the three steps of the algorithm are transferred to the GPU,
which we implemented three kernels, Integral_kernel, Var-
iance_kernel and Thinning_kernel.

3.1. Integral_kernel

The value at any location (x, y) in the integral image is
the sum of all the pixels intensities above and to the left

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

Компьютерная оптика, 2019, том 43, №3 449

of (x, y), inclusive. This can be expressed mathematically
as follow:

(,) (,)
,

x y x y
x x y y

I I  
  

   , (3)

where I' and I are the values of the integral image and the
input image respectively.

Equation (3) has potential for parallel computation,
using the following recursive equations:

(,) (,) (, 1)

(,) (1,) (,)

,

.

x y x y x y

x y x y x y

S I S

I I S





 
   

 (4)

The first stage computes the cumulative row sum S at
a position (x, y) in the image and forwards the sum to the
second stage for computation of the integral image I'(x, y)
value at that position.

This kernel is launched with a number of threads
equal to the number of rows of the input image to be pro-
cessed. These threads are arranged in one-dimensional
thread blocks. Thus, the total number of thread blocks is
the size of the input image divided by the number of
threads. The computation of the integral image is per-
formed in two steps: we assigned one thread to compute
the cumulative sum of one row. Once all threads achieved

calculation, each one of them performs the integral image

value computation for the column assigned to it.
The following algorithm (1) illustrates the integral

image computation: the input image is scanned, and for
each row the cumulative sum is computed. Then, the in-
tegral image is calculated for each column. Finally, the
results are stored in the global memory. Each thread
computes its corresponding row index i, as:

i = (blockIdx.x + threadIdx.x × gridDim.x) × N,

where gridDim.x is the number of blocks in the grid and
N the width of the input image.

Algorithm 1: Integral_kernel

Input: the input image (I) and its height and width M, N
Output: the Integral image (I')
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N;
2: for k ← 0 to (N – 1) do // sweep the row pixels
3: I(i+k+1)

 ← I(i+k)
 + I(i+k+1); // compute the cumulative sum

for one row
4: End;
5: for k ← 0 to (M – 1) do // sweep the column pixels
6: I(i+(k+1)×N)

 ← I(i+k×N)
 + I(i+(k+1)×N); // compute the integral

image for one column
7: I'(i+(k+1)×N)

 ← I(i+(k+1)×N); // Store the integral image value
in the global memory

8: End;

3.2. Variance_kernel

For this kernel, we mapped one thread to each pixel of
the integral image returned by the Integral_kernel .
(N×M) threads are generated to process (N×M) pixels.
These threads are grouped in one-dimensional thread
blocks. The following algorithm (2) illustrates the vari-
ance value computation: the integral and the squared in-
tegral images are scanned, and for each pixel the corre-

sponding variance is computed. Then, the variance value
is stored in the global memory. Each thread computes its
corresponding pixel index i, as:

i = blockIdx.x + threadIdx.x × gridDim.x,

where gridDim.x is the number of blocks in the grid.

Algorithm 2: Variance_kernel

Input: the integral image (I'), the squared integral image
(I''), N and w

Output: the variance image (V)
1: i ← blockIdx.x + threadIdx.x × gridDim.x;
2: Fetch I'(i+(w+1)+(w+1)×N), I'(i–w–w×N), I'(i+(w+1)–w×N)

and I'(i–w+(w+1)×N) from the global memory; //the 4 cor-
ners of the window in the in-
tegral image

3: Fetch I''(i+(w+1)+(w+1)×N), I''(i–w–w×N), I''(i+(w+1)–w×N)
and I''(i–w+(w+1)×N) from the global memory; // the 4 cor-

ners of the window in the
squared integral image

4: Compute vi using formula (3); // computing the variance
value of the pixel i

5: Vi ← vi; // Store the variance value in the global memory

3.3. Thinning_kernel

The Thinning_kernel implementation takes a different
approach from that of the Variance_kernel. A single
thread processes an entire column of the variance image.
Thus, the total number of threads in the grid corresponds
to the number of columns (N) of the variance image (V).
The threads sweep the columns in the ascending and in
the decreasing order. Each thread compares the intensity
of the tested pixel in the column assigned to it with that
of its successor or predecessor according to the direction.
If lower, it will be rejected. Else, it will be stored in the
global memory as an edge pixel. The following algorithm
(3) illustrates the Thinning_kernel procedure. Each thread
computes its corresponding pixel index i, as:

i = (blockIdx.x + threadIdx.x × gridDim.x) × N.

Algorithm 3: Thinning_kernel

Input: the variance image (V), and its width N
Output: the edge image (E)
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N;
2: for k ← 0 to (N – 2) do // sweep the column in the ascend-

ing order
3: if (V(i+k)

 < V(i+k+1)) // compare each pixel in the column
with its successor

4: V(i+k)
 ← 0;

5: End;
6: for k ← (N – 1) to 1 do // sweep the column in the descend-

ing order
7: if (V(i+k)

 < V(i+k–1)) // compare each pixel in the column
with its predecessor

8: V(i+k)
 ← 0;

9: E(i+k)
 ← V(i+k); // Store the edge pixel value in the global

memory
10: End;

We used CUDA streams to further optimize this kernel.
The Thinning_kernel can be divided into two tasks

independent each from the other (sweeping the columns
of the image in the ascending order firstly and in the de-
creasing order secondly).

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

450 Компьютерная оптика, 2019, том 43, №3

Thus, we implemented two sub-kernels (Thin-
ning_kernel_A and Thinning_kernel_D), one for each di-
rection, with the same configuration of threads and blocs
as the original implementation and we created two
streams to launch these sub-kernels concurrently. A better
performance is given by this asynchronous implementa-
tion compared to the basic one. The following algorithms
(4 and 5) illustrate the two sub-kernels procedures.

Algorithm 4: Thinning_kernel_A

Input: the variance image (V), and its width N
Output: the edge image (E)
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N;
2: for k ← 0 to (N – 2) do // sweep the column in the ascend-

ing order
3: if (V(i+k)

 < V(i+k+1)) // compare each pixel in the column
with its successor

4: V(i+k)
 ← 0;

9: E(i+k)
 ← V(i+k); // Store the edge pixel value in the global

memory
10: End;

Algorithm 5: Thinning_kernel_B

Input: the variance image (V), and its width N
Output: the edge image (E)
1: i ← (blockIdx.x + threadIdx.x × gridDim.x) × N;
2: for k ← (N – 1) to 1 do // sweep the column in the descend-

ing order
3: if (V(i+k)

 < V(i+k–1)) // compare each pixel in the column
with its predecessor

4: V(i+k)
 ← 0;

9: E(i+k)
 ← V(i+k); // Store the edge pixel value in the global

memory
10: End;

4. Experimental results and analysis

The aim of these experiments is to confirm that with
the capabilities of the programmable GPU, the speed of our
algorithm will be considerably improved and reached real
time execution. For this purpose, the computational per-
formance of the GPU implementation with different sizes
of images ranging from (128×128) to (1024×1024) pixels
was compared to the CPU implementation. We used a
computer equipped with an Intel® Core ™ i7-3770 CPU
performing at 3.4 GHZ and 16 GB RAM. Also, it is
equipped with an NVIDIA GeForce GTX 780 GPU. A
detailed description of the used graphic card, in this work,
is illustrated in Table 1. For the implementation of the al-
gorithm we used the vs2015 configured with OpenCV
3.0.0, and the CUDA 6.5.

4.1. GPU implementation complexity analysis

From Section 3, the overall computational complexity
of the edge detection algorithm is in the order of
O (17×N×M) to process an image size of (N×M) pixels. In
the Integral_kernel, N threads are launched to carry out
computations, where each thread performs (2×M) opera-
tions. Hence, the computational complexity of one thread
is O (2×M). The Variance_kernel is launched with (N×M)

threads and each one performs 10 operations. Thus, the
computational complexity of a single thread is O (10).
The Thinning_kernel is launched with a total of (N)
threads and each thread performs 2 operations. Hence, the
computational complexity of each thread is O (2×M).

Table 1. GPU hardware specification

Architecture Kepler GK110
Compute capabilities 3.5
Base clock 863 MHZ
Cores CUDA 2304
Number of Streaming Multiprocessor 12
Maximum shared memory per SM 48KB
Maximum threads per SM 2048
Maximum blocks per SM 16
Maximum threads per block 1024

In practice, the execution time depends on the maxi-
mum number of threads that can be executed simultane-
ously by the GPU. In our case, a total of 2048 threads can
be launched by each SM. Thus, a total of (2048×12)
threads can be executed concurrently on the 12 SM of the
GPU. Therefore, the total computational complexity of
the edge detection algorithm is the sum of those of the
three kernels divided by the total number of executed
threads at a time, which is in the order of
O ((10 + 6 × M) / (2048 × 12)) and can be considered as
O (M / (2 × 2048)).

4.2. Optimization of execution configuration

To achieve best performance, a serie of tests by varying
the number of threads per block is carried out to determine
the appropriate configuration that satisfies our real-time con-
straint, taking into account the resource usage of an individ-
ual thread. In this experiment, a set of tests on 300 images
with different sizes ranging from (128×128) to (1024×1024)
pixels, under several practical conditions was performed. For
each test, 200 runs were carried out and the average execu-
tion time is reported for each kernel. Tables 2 – 4 illustrate
the obtained results for each kernel.

We can see that the best run time for the Inte-
gral_kernel, the Variance_kernel and the Thinning_kernel
is achieved when the number of threads is equal to 256,
512 et 32, respectively. This can be explained by the full
use of blocks provided by the SM in these cases, which
leads to maximize resources and consequently speed up
execution time.

4.3. Asynchronous execution assessment

In this section, we evaluate the effectiveness of the
asynchronous implementation of the Thinning_kernel.
Table 5 illustrates the execution times for the two imple-
mentations with different image sizes.

This Table shows that for all image sizes, the asyn-
chronous implementation of the Thinning_kernel outper-
forms the basic implementation with a speedup factor ap-
proximately equal to 1.5×. For example, the run time for
an image size of (1024×1024) pixels is decreased from
5.04 ms to 3.34 ms.

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

Компьютерная оптика, 2019, том 43, №3 451

Table 2. Average execution times (µs) for the Integral_kernel

Image sizes
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024 threads

128×128 467.33 446.51 422.49 - - -
256×256 1033 937.14 889.07 884.66 - -
512×512 2460 2070 1880 1860 2260 -

1024×1024 5960 4930 4170 3940 4710 7680

Table 3. Average execution times (µs) for the Variance_kernel

Image sizes
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024

threads
128×128 43.10 40.28 36.41 42.62 40.57 52.22
256×256 172.54 138.43 142.50 141.40 137.69 170.78
512×512 648.05 534.13 547 546.39 534.1 619.99

1024×1024 2520 2290 2170 2160 2100 2390

Table 4. Average execution times (µs) for the Thinning_kernel

Image sizes
(pixels) 32 threads 64 threads 128 threads 256 threads 512 threads 1024

threads
128×128 378.23 379.69 380.68 - - -
256×256 802.45 809.17 809.04 856.27 - -
512×512 1610 1620 1620 1700 2350 -

1024×1024 3340 3380 3345 3390 4690 8970

Table 5. Execution times (µs) for the two Thinning_kernel
implementations with different image sizes

Image sizes
(pixels) Basic kernel Asynchronous

kernel
128×128 598 378
256×256 1280 802
512×512 2530 1610

1024×1024 5046 3340

4.4. Overall performance assessment

Table 6 illustrates the execution times and speedups
for the CPU and GPU implementations of our edge detec-
tion algorithm for different image sizes. It is clear that the
GPU approach outperforms the CPU implementation. We
can see that considerable gains are achieved with the
GPU implementation with respect to the serial implemen-
tation. For instance, a gain factor around 17× is reached
with an image size of (1024×1024) pixels.

4.5. Comparison with state of the art

In addition, to further prove the effectiveness of the
proposed algorithm, we compared it with those of state-
of-the art in terms of execution times and results accura-
cy. The proposed method in this study is compared to the

most commonly edge detection methods existing in the
literature Sobel, Robert, Prewitt and Canny in terms of
accuracy. Examples of results on 2 images are shown in
Fig.2. From the qualitative results shown in this Figure,
we can see that clear and continuous edges are success-
fully identified in all images with our algorithm. Despite
the specificity of the bubble images, where the gray lev-
els on the bubble boundary are not constant, which makes
its extraction from the background difficult, a remarkably
performance of our algorithm can be seen compared to
the common methods which are failed to extract correctly
the bubbles edges. Our algorithm can accurately extract
edges even if images contain a non-uniform background
and an obscure boundary.

Table 6. Execution times (msec) on CPU and GPU
of the edge detection algorithm and speedup factors

Image sizes
(pixels) CPU GPU Speedup

128×128 104 1.259 82.6
256×256 130 2.763 47.05
512×512 153 5.864 26.09

1024×1024 233 13.320 17.49

 (a) (b) (c) (d) (e) (f)

 (g) (h) (i) (j) (k) (l)

Fig. 2. Edge detection results comparison with state of the art: (a, g) original images, (b, h) Sobel, (c, i) Robert, (d, j) Prewitt, (e, k)
Canny and (f, l) our algorithm (the quality of contours may be deteriorated due to color inversion)

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

452 Компьютерная оптика, 2019, том 43, №3

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Edge detection results: comparison of our algorithm with Canny operator: (a, e) original images, (b, f) Canny; Tresh = 0.3,
(c, g) Canny; Tresh = 0.7 and (d, h) our algorithm (the quality of contours may be deteriorated due to color inversion)

In a second test we compared the performance of our
algorithm versus Canny (since it gave the better results
compared to the other commonly edge detectors, see
Fig. 2). The test is performed on real images that contain
bubbles with different sizes. Fig. 3 illustrates the obtained
results on two images. By visual perception, we can con-
clude clearly that Canny operator give low quality edge
maps relative to our algorithm. If the threshold value is
low, the Canny output will outline the small bubbles, but
many false edges are detected. On the contrary, if the
threshold value is high, small bubbles (surrounded by a
rectangle in the original image) will be discarded.

Also, a quantitative assessment of our edge detector
and the four detectors from the state of the art based on
Pratt’s Figure of Merit (FOM) metric is performed. The
FOM metric measures the deviation of a detected edge
point from the ideal edge and it is defined as follow:

2 '
1

1 1

max(,) 1 ()

dN

d i k

FOM
N N d k


  , (5)

where Ni is the number of the edge points on the ideal
edge, Nd is the number of the detected edge points, d (k) is
the distance between the kth detected edge pixel and the
ideal edge,  is the scaling constant (normally set at 1/9).
In all cases, FOM ranges from 0 to 1, where 1 corre-
sponds to the perfect match between the ideal edge and
the detected edge.

In this experiment, the test is performed on the same
data set used in the previous experiments. Fig. 4 illus-
trates an example of 3 images from this data set. The
mean values of FOM for the different edge detectors are
summarized in Table 7.

Fig. 4. Example of test images for the FOM assessment

Table 7. Performance evaluation using FOM metric

 FOM
Robert 0.2095
Sobel 0.2031
Prewitt 0.2018
Canny 0.2182
Our algorithm 0.3095

Based on these results we can easily conclude that our
edge detector achieves the best value which is nearest to
the ratio of one according to the Pratt measure.

To value the computational performance of our meth-
od, its execution times on 3 image sizes are compared
with those of Robert and Canny edge detection tech-
niques accelerated on the GPU in [40] and [41], respec-
tively. A remarkably performance is achieved with our
algorithm. The results are presented in Table 8.

Table 8. Execution times (msec) comparison

Image sizes
(pixels) Robert [40] Canny [41] Our algo-

rithm

256×256 0.997 6.50 2.763
512×512 7.271 10.90 5.864

1024×1024 56.717 26.05 13.320

Conclusion

In this paper, an effective method for accurate and re-
al time edge detection based on the local variance of the
input image was proposed. This algorithm is performed in
two steps: in the first step, the local variance of each pixel
is computed based on integral image, and then the result-
ing contours are thinning to generate the final edge map.
Different implementations on Intel® core ™ i7-3770
CPU and Nvidia GPU Kepler architecture are tested us-
ing a set of synthetic and real images with different sizes.
We have used CUDA to implement the algorithm on an
NVIDIA GTX780 GPU, and compared its performances
to the CPU implementation. Acceleration factors between
17× and 82× with different image sizes ranging from
(128×128) to (1024×1024) pixels, have been reached
with the GPU implementation compared to the CPU. Al-
so, our algorithm was compared to the most commonly
edge detection techniques existing in the literature, Rob-
ert and Canny in terms of results accuracy and computa-

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

Компьютерная оптика, 2019, том 43, №3 453

tion time performance. A remarkably performance is
reached with our algorithm. Our method is robust against
changes of intensity contrast of edges and capable of giv-
ing high detection responses on low contrast edges. With
such performances, accurately extraction of air bubbles
boundaries in real-time becomes possible.

References
[1] Bian Y, Dong F, Zhang W, Wang H, Tan C, Zhang Z. 3D

reconstruction of single rising bubble in water using digital
image processing and characteristic matrix, Particuology
2013; 11: 170-183.

[2] Thomanek K, Zielinski1 O, Sahling H, Bohrmann G.
Automated gas bubble imaging at sea floor: A new method
of in situ gas flux quantification. Ocean Science 2010; 6:
549-562.

[3] Jordt A, Zelenka C, Deimling JS, Koch R, Koser K. The
bubble box: Towards an automated visual sensor for 3D
analysis and characterization of marine gas release sites.
Sensors 2015; 15: 30716-30735.

[4] Bian Y, Dong F, Wang H. Reconstruction of rising bubble
with digital image processing method. IEEE International
Instrumentation and Measurement Technology Conference
2011.

[5] Paz C, Conde M, Porteiro J, Concheiro M. On the applica-
tion of image processing methods for bubble recognition to
the study of subcooled flow boiling of water in rectangular
channels. Sensors 2017; 17(6): 1448.

[6] Zhong S, Zou X, Zhang Z, Tian H. A flexible image analy-
sis method for measuring bubble parameters. Chemical
Engineering Science 2016; 141: 143-153.

[7] Al-Lashi RS, Gunn SR, Czerski H. Automated processing
of oceanic bubble images for measuring bubble size distri-
butions underneath breaking waves. Journal of Atmospher-
ic and Oceanic Technology 2016; 33(8): 1701-1714.

[8] Yang Z, Zhu Y, Pu Y. Parallel image processing based on
CUDA. International Conference on Computer Science
and Software Engineering 2008: 198-201.

[9] Fung J, Mann S, Aimone C. OpenVIDIA: Parallel GPU
computer vision. Proceedings of the 13th Annual ACM In-
ternational Conference on Multimedia 2005: 849-852.

[10] Smelyanskiy M, Holmes D, Chhugani J, Larson A, Carmean
DM, Hanson D, Dubey P, Augustine K, Kim D, Kyker A, Lee
VW, Nguyen AD, Seiler L, Robb R. Mapping high-fidelity
volume rendering for medical imaging to CPU, GPU and
many-core architectures. IEEE Transactions on Visualization
and Computer Graphics 2009; 15(6): 1563-1570.

[11] Cao T, Tang K, Mohamed A, Tan TS. Parallel Banding
Algorithm to compute exact distance transform with the
GPU. In Book: InI3D’10 Proceedings of the 2010
ACMSIGGRAPH symposium on Inetractive 3D Graphics
and Games. New York, NY: ACM; 2010: 83-90.

[12] Barnat J, Bauch P, Brim L, Ceska M. Computing strongly
connected components in parallel on CUDA. Technical
Report FIMU-RS-2010-10, Brno: Faculty of Informatics,
Masaryk University; 2010.

[13] Duvenhage B, Delport JP, Villiers J. Implementation of the
Lucas-Kanade image registration algorithm on a GPU for 3D
computational platform stabilization. In Book: AFRIGRAPH
’10 Proceedings of the 7th International Conference on Com-
puter Graphics, Virtual Reality, Visualisation and Interaction
in Africa. New York, NY: ACM; 2010: P. 83-90.

[14] Xu C, Liu H, Cao WM, Feng JQ. Multispectral image edge
detection via Clifford gradient. Sci China Inf Sci 2012; 55:
260-269.

[15] Zhang X, Liu C. An ideal image edge detection scheme.
Multidimens Syst Signal Process 2014; 25(4): 659-681.

[16] Melin P, Gonzalez CI, Castro JR, Mendoza O, Castillo O.
Edge-detection method for image processing based on
generalized type-2 fuzzy logic. IEEE Trans Fuzzy Syst
2014; 22: 1515-1525.

[17] Díaz-Pernil D, Berciano A, Peña-Cantillana F, Gutiérrez-
Naranjo M. A segmenting images with gradient-based edge
detection using membrane computing. Pattern Recogn Lett
2013; 34: 846-855.

[18] Guo Y, Şengür A. A novel image edge detection algorithm
based on neutrosophic set. Comput Electr Eng 2014; 40: 3-25.

[19] Naidu DL, Rao ChS, Satapathy S. A hybrid approach for
image edge detection using neural network and particle
Swarm optimization. Proceedings of the 49th Annual Con-
vention of the Computer Society of India (CSI) 2015; 1: 1-9.

[20] Gu J, Pan Y, Wang H. Research on the improvement of
image edge detection algorithm based on artificial neural
network. Optik 2015; 126: 2974-2978.

[21] Gonzalez CI, Melin P, Castro JR, Mendoza O, Castillo O.
Color image edge detection method based on interval type-
2 fuzzy systems. In Book: Melin P, Castillo O, Kacprzyk J,
eds. Design of intelligent systems based on fuzzy logic,
neural networks nature-inspired optimization. Switzerland:
Springer International Publishing; 2015: 3-11.

[22] Shui PL, Zhang WC. Noise robust edge detector combin-
ing isotropic and anisotropic Gaussian kernels. Pattern
Recognition 2012; 45(2): 806-820.

[23] Lopez-Molina C, Vidal-Diez de Ulzurrun G, Bateens JM,
Van den Bulcke J, De Bates B. Unsupervised ridge detec-
tion using second order anisotropic Gaussian kernels. Sig-
nal Processing 2015; 116: 55-67.

[24] Li S, Dasmahapatra S, Maharatna K. Dynamical system
approach for edge detection using coupled FitzHugh-
Nagumo neurons. IEEE Trans Image Process 2015; 24:
5206-5220.

[25] Dollár P, Zitnick CL. Fast edge detection using structured
forests. IEEE Trans Pattern Anal Mach Intell 2015; 37:
1558-1570.

[26] Lopez-Molina C, Galar M, Bustince H, De Bates B. On the
impact of anisotropic diffusion on edge detection. Pattern
Recognition 2014; 47: 270-281.

[27] Miguel A, Poo D, Odone F, De Vito E. Edge and corner
with shearlets. IEEE Trans Image Proces 2015; 24: 3768-
3781.

[28] Lopez-Molina C, De Bates B, Bustince H, Sanz J, Bar-
renechea E. Multi-scale edge detection based on Gaussian
smoothing and edge tracking. Knowledge-Based Systems
2013; 44: 101-111.

[29] Zhenxing W, Xi L, Yong D. Image edge detection based
on local dimension: a complex networks approach. Physica
A 2015; 440: 9-18.

[30] Azeroual A, Afdel K. Fast image edge detection based on
faber schauder wavelet and otsu threshold. Heliyon 2017;
3(12): e00485.

[31] Medina-Carnicer R, Carmona-Poyato A, Munoz-alinas R,
Madrid-Cuevas FJ. Determining hysteresis thresholds for
edge detection by combining the advantages and disad-
vantages of thresholding methods. IEEE Transactions on
Image Processing 2010; 19(1): 165-173.

[32] Laligant O, Truchetet F. A nonlinear derivative scheme ap-
plied to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence 2010; 32(2): P. 242-257.

[33] Sri Krishna A, Eswara RB, Pompapathi M. Nonlinear
noise suppression edge detection scheme for noisy images.

GPU acceleration of edge detection algorithm based on local variance... Bettaieb A., Filali N., Filali T., Ben Aissia H.

454 Компьютерная оптика, 2019, том 43, №3

International Conference on Recent Advances and Innova-
tions in Engineering (ICRAIE) 2014: 1-6.

[34] Pawar KB, Nalbalwar SL. Distributed canny edge detection
algorithm using morphological filter. IEEE International Con-
ference on Recent Trends In Electronics, Information &
Communication Technology (RTEICT) 2016; P. 1523-1527.

[35] Golpayegani N, Ashoori A. A novel algorithm for edge
enhancement based on Hilbert Matrix. 2nd International
Conference on Computer Engineering and Technology
2010: V1-579-V1-581.

[36] Sghaier MO, Coulibaly I, Lepage R. A novel approach toward
rapid road mapping based on beamlet transform. IEEE Geo-
science and Remote Sensing Symposium 2014; 2351-2354.

[37] Biswas R, Sil J. An improved canny edge detection algo-
rithm based on type-2 fuzzy sets. 2nd International Confer-

ence on Computer, Communication, Control and Infor-
mation Technology (C3IT-2012) 2012; 4: 820-824.

[38] Dollar P, Zitnick CL. Fast edge detection using structured
forests. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 2015; 37(8): 1558-1570.

[39] Fu W, Johnston M, Zhang M. Low-level feature extraction
for edge detection using genetic programming. IEEE
Transactions on Cybernetics 2014; 44(8): 1459-1472.

[40] Gong HX, Hao L. Roberts edge detection algorithm based
on GPU. Journal of Chemical and Pharmaceutical Re-
search 2014; 6: 1308-1314.

[41] Barbaro M. Accelerating the Canny edge detection algo-
rithm with CUDA/GPU. International Congress
COMPUMAT 2015.

Author’s information

Afef Bettaieb graduated from National School of Engineers of Monastir, Tunisia in 2011, achieving M.D. in Elec-
tronics and Telecommunications. She is a PHD student in Electrical department at the National School of Engineers of
Monastir, Tunisia, since 2011. Her research interests are image processing and computer vision techniques, real time
image processing, parallel programming and GPU programming language. E-mail: bettaiebafef@gmail.com .

Nabila Filali received the Engineering degree in Electrical Engineering from the National School of Engineers of
Monastir (ENIM), Tunisia in 1989 and the Advanced Studies Diploma in 1992 from the University of Tunis and Ph.D.
degree in Image Processing and Embedded Electronic systems at the University of Monastir, Tunisia and the University
of Jean Monnet - Saint Etienne, France in 2009. She is a Research professor in Electrical department at ENIM, where
she teaches courses in Computer Vision and Image Processing, High Speed Networks and NoC, New Technologies and
Advanced Architectures of Microprocessors and Multiprocessors. Her current research interests include embedded sys-
tem implementation, GPU computing and real time image processing. E-mail: merchaoui.filali@laposte.net .

Taoufik Filali is a Research Professor in Electrical department at the National School of Engineers of Monastir, Tuni-

sia, since 1982. His interests include embedded system implementation, GPU computing and image processing. He re-
ceived his Ph.D. degree in Image, Vision and Signal at the University of Jean Monnet - Saint Etienne, France in 2011. He
is interested in research projects related to the application of metrology and image processing techniques within the field of
fluid dynamics, real time processing and medical domain and many industrial projects. E-mail: tafilali@laposte.net .

Habib Ben Aissia received the Engineers Doctor energetic from a High School in France in 1986 (ENSMA at Poi-

tiers). He is a full Professor at the National School of Engineers of Monastir, Energetic Engineering department, Direc-
tor of the Laboratory of Metrology and Energetic Systems (LR18ES21). He is author of about 80 articles. He is one by
the founding members of National School of Engineers of Monastir. E-mail: habib.benaissia@enim.rnu.tn .

Received August 18, 2018. The final version – April 01, 2019.

