Расчет мощности поля, проникающего во внешнюю оболочку слабонаправляющего одномодового волоконного световода

В.А. Гладких¹

¹ Вычислительный центр ДВО РАН, Хабаровск, Россия

Аннотация

Рассмотрен круглый в поперечном сечении регулярный слабопроводящий волоконный световод с двойной оболочкой. Для одномодового режима такого волновода получено выражение для оценки части мощности поля моды, проникающей во внешнюю сплошную оболочку, в стандартном подходе и в Гауссовой модели. Показано, что в Гауссовой модели получается более простой и прозрачный результат, которым можно воспользоваться на практике, в частности, при конструировании такого типа волноводов с минимальной частью мощности, проникающей во внешнюю оболочку.

<u>Ключевые слова</u>: уравнения Максвелла, волоконный световод, двухступенчатый профиль, цилиндрические функции, Гауссова модель.

<u>Цитирование</u>: Гладких, В.А. Расчет мощности поля, проникающего во внешнюю оболочку слабонаправляющего одномодового волоконного световода / В.А. Гладких // Компьютерная оптика. – 2019. – Т. 43, № 4. – С. 557-561. – DOI: 10.18287/2412-6179-2019-43-4-557-561.

Введение

В многомодовом оптическом волокне межмодовая дисперсия существенно ограничивает его информационную пропускную способность. Для её полного исключения волокно проектируют таким образом, чтобы в нём распространялась только одна мода [1]. Такой световод имеет значительно меньший коэффициент затухания по сравнению с многомодовым и большую пропускную способность. Стандартный световод - коаксиальная диэлектрическая структура, состоящая из центральной жилы (сердцевина), окружённой оболочкой с меньшим показателем преломления. В зависимости от структуры распределения показателя преломления по радиусу сердцевины световоды делятся на ступенчатые и градиентные. Как правило, для таких световодов контраст показателей преломления Δn в принципе мал. Разрабатываются также световоды с Δn , более чем на порядок превышающим Δn в обычных световодах – микроструктурированные или дырчатые световоды [2] (в оболочке таких световодов делаются сплошные, однородные по всей длине продольные отверстия, расположенные в поперечном сечении в том или ином порядке). К микроструктурированным световодам относятся также брэгговские световоды – световоды с оболочкой из коаксиальных диэлектрических слоёв с чередующимися через одно значениями показателя преломления [3]. Но, хотя волноводы такого типа позволяют добиваться уникальных оптических свойств, производство таких световодов весьма затратно. Менее затратны просто многослойные световоды, в частности, двуслойные, к рассмотрению которых мы перейдём: сердцевина радиусом r₁ с показателем преломления $n_{co(0)}$ окружена оболочкой, имеющей радиус ρ и показатель преломления n_{co(1)}, которая, в свою очередь, помещена в бесконечную внешнюю оболочку с показателем преломления n_{cl}. Предполагается, что $n_{co(0)} \ge n_{co(1)} > n_{cl}$ и то, что световод слабо проводящий. Такого типа световод интересен с той точки зрения, что формально его можно рассматривать как промежуточный между обычными ступенчатыми и градиентными световодами. Мы постараемся получить простое выражение, позволяющее оценить часть мощности поля моды, проникающей во внешнюю сплошную оболочку. Что касается варианта с «депрессивной» промежуточной оболочкой ($n_{co(0)} \ge n_{cl} > n_{co(1)}$), то он с исчерпывающей полнотой изложен в [4].

1. Поле в круглом одномодовом световоде с двойной оболочкой. Стандартный подход

Для *прозрачной* диэлектрической среды (без источников, магнитная проницаемость $\mu = 1$) с диэлектрической проницаемостью $\varepsilon = n^2 = \text{const}$ уравнения Максвелла имеют вид (**E**, **H** – векторы соответственно электрического и магнитного полей):

$$\operatorname{rot} \vec{\mathbf{H}} = (n^2/c) \partial \vec{\mathbf{E}} / \partial t, \operatorname{rot} \vec{\mathbf{E}} = -(1/c) \partial \vec{\mathbf{H}} / \partial t,$$

div $\mathbf{E} = 0$, div $\vec{\mathbf{H}} = 0$. (1)

Отделяя временной множитель (ω – частота):

$$\vec{\mathbf{E}}(t,\vec{R}) = \vec{\mathbf{E}}(\vec{R})\exp(-i\omega t), \vec{\mathbf{H}}(t,\vec{R}) = = \vec{\mathbf{H}}(\vec{R})\exp(-i\omega t), (\vec{R} = (x, y, z)),$$
(2)

уравнения Максвелла запишем в виде:

$$\operatorname{rot} \vec{\mathbf{H}} = -ikn^{2}\vec{\mathbf{E}}, \operatorname{rot} \vec{\mathbf{E}} = ik\vec{\mathbf{H}},$$

$$\operatorname{div} \vec{\mathbf{E}} = 0, \operatorname{div} \vec{\mathbf{H}} = 0, k = \omega/c,$$
(3)

откуда с помощью известных формул векторного анализа:

$$\Delta \vec{\mathbf{E}} + k^2 n^2 \vec{\mathbf{E}} = 0, \vec{\mathbf{H}} = -(i/k) \operatorname{rot} \vec{\mathbf{E}}.$$
(4)

В случае *регулярного* волновода $E(\mathbf{R}) = \exp(i\beta z)$ E(x, y), где β – *постоянная распространения* (мода, распространяющаяся вдоль оси волновода – оси z), получим следующее уравнение для поля E(x, y):

$$\Delta_{t}\vec{\mathbf{E}} + (k^{2}n^{2} - \beta^{2})\vec{\mathbf{E}} = 0,$$

$$\left(\nabla_{t} = \vec{i} \,\partial/\partial x + \vec{j} \,\partial/\partial y, \Delta_{t} = \nabla_{t}\nabla_{t}\right).$$
(5)

Поскольку поток энергии (вектор Умова– Пойнтинга S) должен быть действительным, то

$$\begin{bmatrix} \vec{\mathbf{E}}, \vec{\mathbf{H}} \end{bmatrix} \rightarrow (1/4) \begin{bmatrix} \vec{\mathbf{E}} + \vec{\mathbf{E}}^*, \vec{\mathbf{H}} + \vec{\mathbf{H}}^* \end{bmatrix} = (1/4) \times \\ \times \left\{ \begin{bmatrix} \vec{\mathbf{E}}, \vec{\mathbf{H}} \end{bmatrix} + \begin{bmatrix} \vec{\mathbf{E}}^*, \vec{\mathbf{H}}^* \end{bmatrix} \right\} + (1/2) \underbrace{\operatorname{Re} \begin{bmatrix} \vec{\mathbf{E}}, \vec{\mathbf{H}}^* \end{bmatrix}}_{\underline{\mathbf{E}}}.$$

При усреднении по времени подчеркнутая одной чертой сумма обращается в нуль (из-за множителей $\exp(\pm 2i\omega t)$), и для вектора S мы получим, полагая *E* действительным:

$$\vec{\mathbf{S}} = (c/8\pi) \operatorname{Re}\left[\vec{\mathbf{E}}, \vec{\mathbf{H}}^*\right] = \vec{\mathbf{e}}_z \operatorname{const} E^2, \qquad (6)$$

где e_z – единичный вектор в направлении оси z – направлении волны в волноводе.

Перейдём к нашей задаче.

Рассмотрим *регулярный* волоконный световод круглого поперечного сечения с двойной оболочкой – световод с *двухступенчатым* профилем показателя преломления:

$$n \equiv \begin{cases} n_{co(0)}, r \le r_{1} \\ n_{co(1)}, r_{1} < r \le \rho, r = \sqrt{x^{2} + y^{2}}, \\ n_{cl}, r > \rho \end{cases}$$
(7)
$$\left(n_{cl} < n_{co(1)} < n_{co(0)}\right),$$

где ρ – радиус волокна, $n_{co(1)}$ – показатели преломления волокна, n_{cl} – показатель преломления оболочки. Для профиля (7) вместо (5) имеем (снимаем символ вектора – решения отличаются только компонентами единичного вектора поляризации):

$$\Delta_{t}E + \begin{pmatrix} \chi_{0}^{2} \\ \chi_{1}^{2} \\ -\chi_{oo}^{2} \end{pmatrix} E = 0,$$

$$\begin{pmatrix} \chi_{0}^{2} = k^{2}n_{co(0)}^{2} - \beta^{2}, r \leq r_{1} \\ \chi_{1}^{2} = k^{2}n_{co(1)}^{2} - \beta^{2}, r_{1} < r \leq \rho \\ \chi_{cl}^{2} = \beta^{2} - k^{2}n_{cl}^{2}, r > \rho \end{pmatrix},$$

$$\nabla_{t} = \vec{i} \, \partial/\partial x + \vec{j} \, \partial/\partial y, \Delta_{t} = \nabla_{t} \nabla_{t}.$$
(8)

Переходя к полярным координатам ($x = r \cos \varphi$, $y = r \sin \varphi$):

для функций $R_m(r)$ получаем уравнения:

$$\frac{d^{2}}{dr^{2}} \begin{pmatrix} R_{co(0)m}(r) \\ R_{co(1)m}(r) \\ R_{(cl)m}(r) \end{pmatrix} + \frac{1}{r} \frac{d}{dr} \begin{pmatrix} R_{co(0)m}(r) \\ R_{co(1)m}(r) \\ R_{(cl)m}(r) \end{pmatrix} + \\
+ \begin{cases} \chi_{0}^{2} \\ \chi_{1}^{2} \\ -\chi_{cl}^{2} \end{pmatrix} - \frac{m^{2}}{r^{2}} \begin{cases} R_{co(0)m}(r) \\ R_{cl(1)m}(r) \\ R_{cl(1)m}(r) \\ R_{(cl)m}(r) \end{pmatrix} = 0.$$
(10)

В соответствии с рассматриваемым нами одномодовым случаем решения уравнений (10), как легко видеть, имеют вид:

$$R_{co(0)0}(r) = J_0(\chi_0 r), R_{co(1)0}(r) = J_0(\chi_1 r),$$

$$R_{(cl)0}(r) = K_0(\chi_{cl} r),$$
(11)

где $J_0(x)$, $K_0(x)$ – функции Бесселя и Макдональда нулевого порядка. Согласно (9) и (11) мы можем записать для поля (C_0 , C_1 , C_{cl} – постоянные):

$$\begin{pmatrix} E_{co(0)0} \\ E_{co(1)0} \\ E_{(cl)0} \end{pmatrix} (r) = \begin{pmatrix} C_0 J_0 (\chi_0 r) \\ C_1 J_0 (\chi_1 r) \\ C_{cl} K_0 (\chi_{cl} r) \end{pmatrix}.$$
(12)

Постоянные определяются сшивкой решений при $r = r_1, \rho$:

$$C_{0}J_{0}(\chi_{0}r)\Big|_{r=\eta} = C_{1}J_{0}(\chi_{1}r)\Big|_{r=\eta},$$

$$C_{1}J_{0}(\chi_{1}r)\Big|_{r=\rho} = C_{cl}K_{0}(\chi_{cl}r)\Big|_{r=\rho}.$$
(13)

Из (6) и (12) для мощности потока энергии P_{cl} через площадь поперечного сечения оболочки и мощности потока энергии P_{total} через площадь поперечного сечения волокна и оболочки имеем:

$$P_{cl} = \operatorname{const} \int \left\{ \theta(r-\rho) \frac{C_{cl}}{C_1} K_0(\chi_{cl}r) \right\}^2 d\Sigma_{cl},$$

$$P_{total} = \operatorname{const} \times$$

$$\times \int \left\{ \theta(r_1 - r) J_0(\chi_0 r) + \theta(r - r_1) \theta(\rho - r) \frac{C_1}{C_0} \times$$

$$\times J_0(\chi_1 r) + \theta(r-\rho) \frac{C_{cl}}{C_0} K_0(\chi_{cl}r) \right\}^2 d\Sigma_{total},$$

$$P = \int_{\Sigma} \vec{S} d\vec{\Sigma}; d\Sigma_{cl} = r dr d\phi \left(r \in (\rho, \infty) \right);$$

$$d\Sigma_{total} = r dr d\phi \left(r \in (0, \infty), \phi \in (0, 2\pi) \right),$$
Где $\theta(x) - \phi$ ункция Хевисайда:

$$\theta(x) \equiv \begin{cases} 1, \ x > 0, \\ 0, x < 0. \end{cases}$$
(15)

С помощью (13), (15) и формулы ([5]): $\int Z_m^2(\alpha x) x \, dx =$

$$= \frac{x^2}{2} \{ Z_m^2(\alpha x) - Z_{m-1}(\alpha x) \times Z_{m+1}(\alpha x) \}, m = 0, 1, \dots (16)$$
$$J_{-m}(x) = (-1)^m J_m(x), K_{-m}(x) = K_m(x);$$

 $(Z_m(x)$ – произвольная цилиндрическая функция), из (14) для части мощности поля моды δ , проникающей во внешнюю сплошную оболочку, находим:

$$\delta = \frac{P_{cl}}{P_{total}} = \frac{A}{A+B}; A = -\frac{J_0^2 (\chi_0 r_1)}{J_0^2 (\chi_1 r_1)} \times \frac{J_0^2 (\chi_1 \rho)}{K_0^2 (\chi_{cl} \rho)} \Big[K_0^2 (\chi_{cl} \rho) - K_1^2 (\chi_{cl} \rho) \Big];$$

$$B = \frac{J_0^2 (\chi_0 r_1)}{J_0^2 (\chi_1 r_1)} \Big[J_0^2 (\chi_1 \rho) + J_1^2 (\chi_1 \rho) \Big] + (17)$$

$$+ \frac{r_1^2}{\rho^2} \Big\{ \Big[J_0^2 (\chi_0 r_1) + J_1^2 (\chi_0 r_1) \Big] - \frac{J_0^2 (\chi_0 r_1)}{J_0^2 (\chi_1 r_1)} \Big[J_0^2 (\chi_1 r_1) + J_1^2 (\chi_1 r_1) \Big] \Big\}.$$

Точное выражение (17) содержит много параметров и, к сожалению, крайне громоздко для дальнейшего анализа. В частности, не определена входящая в χ_0 , χ_1 , χ_{cl} постоянная β , которая находится численными методами ([6]) – для неё, согласно (8), мы можем лишь написать неравенство:

$$k^2 n_{oo}^2 < \beta^2 < k^2 n_1^2 < k^2 n_0^2$$

2. Поле в круглом одномодовом световоде с двойной оболочкой. Гауссова модель

Но у нас есть другая альтернатива – в одномодовом режиме, который мы рассматриваем, квадраты функций $J_0(\chi_0 r)$, $J_1(\chi_1 r)$ (квадраты полей, определяющих энергию внутри световода) в среднем спадают к оболочке, а в оболочке квадрат поля – квадрат функции $K_0(\chi_{cl} r)$ – спадает экспоненциально до нуля на бесконечности. Поэтому хорошей моделью для радиальной составляющей электрического поля E(r) одномодового световода с двухступенчатым профилем (7) вместо (11–13) может служить обобщение гауссоиды, которая хорошо зарекомендовала себя при анализе обычных одномодовых ступенчатых световодов ([6]–[8]):

$$E = \begin{cases} C_1 \exp\left(-r^2/2a_0^2\right), r \le r_1, \\ C_2 \exp\left(-r^2/2a_1^2\right), r > r_1, \end{cases}$$
(18)

где a_0 , $a_1 - радиусы модового пятна соответственно для <math>n_{co}$, n_1 . Таким образом, для $E(0 \le r \le \infty)$ и для $E(r \ge \rho)$ можно записать:

$$E(0 \le r < \infty) = C_1 \exp(r_1 - r)(-r^2/2a_0^2) + + C_2\theta(r - r_1)\exp(-r^2/2a_1^2),$$
(19)
$$E(r > \rho) = C_2\theta(r - \rho)\exp(-r^2/2a_1^2),$$

где C_1 , C_2 – постоянные, а $\theta(x)$ – функция Хевисайда (15). В силу непрерывности поля:

$$C_{1} \exp\left(-r^{2}/2a_{0}^{2}\right)\Big|_{r=n} = C_{2} \exp\left(-r^{2}/2a_{1}^{2}\right)\Big|_{r=n},$$

$$C_{2}^{2}/C_{1}^{2} = \exp\left\{-r_{1}^{2}\left(1/a_{0}^{2}-1/a_{1}^{2}\right)\right\}.$$
(20)

В рассматриваемом случае вместо (14) запишем ($S_d \Sigma = \text{const} E^2 2\pi r \, dr$ согласно (6)):

$$P_{cl} = \operatorname{const} 2\pi C_{1}^{2} \frac{C_{2}^{2}}{C_{1}^{2}} \int_{\rho}^{\infty} \exp\left(-r^{2}/a_{1}^{2}\right) r \, dr =$$

$$= \pi C_{1}^{2} \operatorname{const} \cdot a_{1}^{2} \exp\left\{-\rho^{2}\left[\frac{\alpha^{2}}{a_{0}^{2}} + \frac{(1-\alpha^{2})}{a_{1}^{2}}\right]\right\},$$

$$\alpha \equiv \frac{r_{1}}{\rho} \in (0,1);$$

$$P_{total} = \operatorname{const} 2\pi C_{1}^{2} \left\{\int_{0}^{n} \exp\left(-\frac{r^{2}}{a_{0}^{2}}\right) r \, dr + \frac{C_{2}^{2}}{C_{1}^{2}} \times \right.$$

$$\times \left\{\exp\left(-\frac{r^{2}}{a_{1}^{2}}\right) r \, dr\right\} = \pi C_{1}^{2} \operatorname{const} \cdot a_{1}^{2} \times \left. \left\{\exp\left(-\frac{\alpha^{2}\rho^{2}}{a_{0}^{2}}\right) + \frac{a_{0}^{2}}{a_{1}^{2}}\left[1 - \exp\left(-\frac{\alpha^{2}\rho^{2}}{a_{0}^{2}}\right)\right]\right\},$$
(21)

откуда для части мощности поля моды δ , проникающей во внешнюю сплошную оболочку, вместо (17) находим:

$$\delta = \frac{\exp\left(-\left[\alpha^{2}\left(\rho/a_{0}\right)^{2}+\left(1-\alpha^{2}\right)\left(\rho/a_{1}\right)^{2}\right]\right)}{\exp\left\{-\frac{\alpha^{2}\rho^{2}}{a_{0}^{2}}\right\}+\left(\frac{a_{0}}{a_{1}}\right)^{2}\left[1-\exp\left\{-\frac{\alpha^{2}\rho^{2}}{a_{0}^{2}}\right\}\right]},\qquad(22)$$
$$\alpha \equiv \frac{r_{1}}{\rho}.$$

Как известно, волновод со ступенчатым профилем показателем преломления является одномодовым, если:

$$0 < V = (2\pi\rho/\lambda) NA = = (2\pi\rho/\lambda) \sqrt{n_{co}^2 - n_{cl}^2} < 2,405,$$
(23)

где n_{co} , n_{cl} – показатели преломления волокна и оболочки соответственно, V, NA, λ – волноводное число, числовая апертура и длина волны соответственно. Для градиентного световода условие одномодовости (23) приближенно справедливо, если под р в (23) понимать эффективный радиус, измеряемый на уровне средней величины $n_{av} = (n_{co} + n_{cl})/2$, где n_{co} – максимальный показатель преломления градиентного световода в центре ([9]). Поскольку рассматриваемый нами световод, как ранее сказано, формально может рассматриваться как промежуточный между ступенчатым и градиентным, то мы правило (23) распространим на наш случай (для слабопроводящих световодов ошибка небольшая). Таким образом, в соответствии с (23) для радиуса модового пятна а мы можем воспользоваться выражением, справедливым при *V*<2,5 ([10]):

$$a \approx 0,4\lambda / \sqrt{n_{co}^2 - n_{cl}^2} \rightarrow$$

$$\rightarrow 1/a = (2,5/\lambda) \sqrt{n_{co}^2 - n_{cl}^2},$$
(24)

так что для a_0 , a_1 из (22) можно записать:

$$a_{0} = 0, 4\lambda / \sqrt{n_{co(0)}^{2} - n_{co(1)}^{2}},$$

$$a_{1} = 0, 4\lambda / \sqrt{n_{co(1)}^{2} - n_{cl}^{2}}.$$
(25)

Подставляя в (22), получим:

$$\delta(\alpha, \beta, V) = \frac{(1-\beta)\exp\{-A\left[\alpha^{2}+\beta(1-2\alpha^{2})\right]\}}{\beta+(1-2\beta)\exp[-A\alpha^{2}(1-\beta)]};$$

$$A = \left(\frac{2,5}{2\pi}V\right)^{2}, 0 < V \approx \frac{2\pi\rho}{\lambda}\sqrt{n_{co(0)}^{2}-n_{cl}^{2}} < 2,405, \quad (26)$$

$$\alpha = \frac{r_{1}}{\rho} \in (0,1), \beta = \frac{n_{co(1)}^{2}-n_{cl}^{2}}{n_{co(0)}^{2}-n_{cl}^{2}} \in (0,1).$$

Результат (26), в отличие от (17), позволяет с хорошей точностью и довольно наглядно конструировать одномодовый световод с двойной оболочкой с двухступенчатым профилем с минимальной частью мощности, проникающей во внешнюю оболочку – для каждого конкретного значения V из интервала (0; 2,4) прогонкой параметров α и β из интервалов (0: 1) находим $\alpha_{opt}(V)$ и $\beta_{opt}(V)$, при которых (26) достигает минимального значения δ_{min} , а затем находим $r_{1(opt)}(V)$ и $n_{co(1)}(V)$, согласно (26) (определения α и β):

$$r_{1(opt)}(V) = \alpha_{opt}(V)\rho, n_{co(1)(opt)}^{2}(V) =$$

= $n_{cl}^{2} + \beta_{opt}(V)(n_{co(0)}^{2} - n_{cl}^{2}),$ (27)

причём параметры ρ , λ , NA связаны условием для данного V (о NA – (23)):

$$V \approx 2\pi (\rho/\lambda) NA.$$
 (28)

Если же нам известны значения r_1 и $n_{co(1)}$, то формулы (26) также позволяют оценить часть мощности, проникающей во внешнюю оболочку потери энергии в оболочке для этих значений для данного V. Приведём пример последнего утверждения:

$$\alpha = \beta = 0, 5 \rightarrow r_{1} = 0, 5\rho, n_{co(1)}^{2} = , 5\left(n_{co(0)}^{2} + n_{cl}^{2}\right) \rightarrow \delta(0, 5; 0, 5; V) = \exp(-0, 5A) \approx \exp(-0, 792V^{2}) \rightarrow \delta(0, 5; 0, 5; V) \Big|_{V \in (0, 1; 2, 4)} \approx (0, 99; 0, 01); \ \delta(0, 5; 0, 5; V = 1) \approx 0, 45; \ \delta(0, 5; 05; V = 1, 5) \approx 0, 17.$$

$$(29)$$

Заключение

В работе получены следующие результаты. Получено выражение (26) для проникающей во внешнюю сплошную оболочку части мощности поля моды. Это выражение, согласно сказанному после (23), является приближённым, но вместе с тем и компактным, позволяющим с достаточной точностью и просто оценить рассматриваемую часть мощности поля моды. Однако, как можно видеть из примера (29), в общих чертах показывающего динамику, формула (26) даёт адекватный результат при $1,5 < V \le 2,4$, что связано также и с Гауссовой моделью.

Литература

- 1. Гауэр, Дж. Оптические системы связи / Дж. Гауэр. М.: Радио и связь, 1989. 504 с.
- Гапонов, Д.А. Оптические свойства микроструктурированных волоконных световодов на основе теллуритного стекла / Д.А. Гапонов, С.А. Бирюков // Квантовая электроника. – 2006. – №4(36). – С. 343-348.

- Бирюков, А.С. Оптические свойства брэгтовских волоконных световодов / С.А. Бирюков, Д.В. Богданович, Д.А. Гапонов, Ф.Д. Прямиков // Квантовая электроника. - 2008. – №7(389). – С. 620-633.
- Адамс, М. Введение в теорию оптических волноводов / М. Адамс. – М.: Мир, 1984. – 512 с.
- Градштейн, И.С. Таблицы интегралов, сумм, рядов и произведений / И.С. Градштейн, И.М. Рыжик. – М.: Наука, 1971. – 1108 с.
- Снайдер, А. Теория оптических волноводов / А. Снайдер, Дж. Лав. – М.: Радио и связь, 1987. – 656 с.
- Ratuszek, M. Analysis of reflectometric measurements losses of spliced single mode telecommunication fibers with significantly different parameters / M. Ratuszek // Optica Applicata. – 2005. – Vol. 35, No. 2. – P. 347-363.
- 8. Каток, В.Б. Аналіз стиків одномодових волоконних світловодів / В.Б. Каток, І.Е. Руденко // Наукові записки УНДІЗ. 2009. № 3(11). С. 35-37.
- 9. Семёнов, Н.А. Оптические кабели связи: Теория и расчёт / Н.А. Семёнов. – М.: Радио и связь, 1981. – 152 с.
- Листвин, В.Н. DWDM-системы / В.Н. Листвин, В.Н. Трещиков // Фотон-экспресс. – 2012. – № 7(103). – С. 34-37.

Сведения об авторе

Гладких Вячеслав Александрович, 1948 г., окончил Дальневосточный государственный университет в 1971 г. (г. Владивосток), аспирантуру в Университете дружбы народов (г. Москва), кандидат физикоматематических наук, работает старшим научным сотрудником в Вычислительном центре ДВО РАН. Область научных интересов: теория относительности, электродинамика (её приложение к задачам оптики), математическая физика. Е-mail: <u>gladkih@as.khb.ru</u>.

Calculation of the power of the field, peneting into the external environment of the weaknessing guide of a single-mode fiber

V.A. Gladkikh¹

¹ Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia

Abstract

A regular circular weakly guiding double clad optical fiber is considered. For a single-mode regime of the waveguide, an expression for estimating the proportion of the mode field power penetrating into the outer continuous cladding is obtained using a standard approach and a Gaussian model. It is shown that a simpler and more transparent result is obtained in the Gaussian model, which can be used in practical applications, in particular, when designing this type of waveguides with a minimal proportion of power penetrating into the outer shell.

<u>Keywords</u>: Maxwell equations, fiber waveguide, two-stage profile, cylindrical functions, Gaussian model.

<u>Citation</u>: Gladkikh VA. Calculation of the power of the field, peneting into the external environment of the weaknessing guide of a single-mode fiber. Computer Optics 2019; 43(4): 557-561. DOI: 10.18287/2412-6179-2019-43-4-557-561.

References

- [1] Gower J. Optical communication sistems. London: Prentice Hall, 1984.
- [2] Gaponov DA, Birjukov AS. Optical properties of microstructured optical fibers based on tellurite glass [In Russian]. Quantum electronics 2006; 4(36): 343-348.
- [3] Birjukov AS, Bogdanovich DV, Gaponov DA, Prjamikov AD. Optical properties of Bragg optical fibers [In Russian]. Quantum Electronics 2006; 7(38): 620-633.
- [4] Adams MJ. An introduction to optical waveguides. Chichester, New York, Brisbane, Toronto: John Wiley & Sons, Inc., 1981.
- [5] Gradstein IS, Ridjig IM. Tables of integrals, sums, series and products [In Russian]. Moscow: "Nauka" Publisher; 1971.

- [6] Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman Hall, 1983.
- [7] Ratuszek M. Analysis of reflectometric measurements losses of spliced single mode telecommunication fibers with significantly different parameters. Optica Applicata 2005; 35(2): 347-363.
- [8] Katok VB, Rudenko IE. An analysis of joints of singlemode fiber-type light sources [In Ukrainian]. Scientific notes of UNIDO 2009; 3(11): 35-37.
- [9] Semenov NA. Optical communication cables: Theory and calculation [In Russian]. Moscow: "Radio i Svyaz" Publisher; 1981.
- [10] Listvin VN, Treshchikov VN. DWDM systems [In Russian]. Photon-Express 2012; 7(103): 34-37.

Author's information

Vyacheslav Alexandrovich Gladkikh, born in 1948, graduated from the Far Eastern State University in 1971 (Vladivostok), postgraduate studies at the University of Friendship of Peoples (Moscow), candidate in Physics and Matematics, works as a senior researcher at the Computing Center of the Far Eastern Branch of the Russian Academy of Sciences. Research interests: the theory of relativity, electrodynamics (its application to the problems of optics), mathematical physics. E-mail: <u>gladkih@as.khb.ru</u>.

Received November 29, 2018. The final version – June 22, 2019.