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Abstract  

An efficient algorithm for registration of two non-rigid objects based on geometrical transfor-
mation of the template object to target object is proposed. The transformation is considered as 
warping of the template onto the target. To choose the most suitable transformation from all possi-
ble warps, a registration algorithm should satisfy deformation constraints referred to as regulariza-
tion of non-rigid objects. In this work, we use variational functionals for affine transformations. 
With the help of computer simulation, the proposed method for searching the optimal geometrical 
transformation is compared with that of common algorithms. 
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Introduction 

Non-rigid registration of two point clouds can be con-
sidered as warping of the template cloud onto the target 
cloud. To find the correct deformation from all possible 
warps, the proposed registration algorithm imposes a 
penalty for deformation. We minimize difference be-
tween transformations acting on neighboring vertices of 
the mesh. Basically, the Iterative Closest Point (ICP) 
method [1, 2] looks for a transformation for all template 
point clouds. So, ICP based methods compute a prelimi-
nary set of correspondences by searching the closest 
points to template vertices on the target surface, then seek 
a transformation which aligns the template with the cor-
respondences. The procedure is repeated with new corre-
spondences obtained by searching the closest points to 
the vertices of the displaced template. ICP methods can 
be classified by the type of deformation as well as by the 
way in which these deformations are found. A global rig-
id transformation was independently proposed [1, 2]. In 
these methods, each step of the iteration is optimal with 
respect to fixed correspondences. 

The difference between these two methods is as fol-
lows: in [2] preliminary correspondences are computed 
only along the surface normal, while [1] uses the closest 
points. In contrary, we consider separate geometrical 
transformations for every point of the template cloud. 
Originally, this approach was introduced in [3, 4]. Regis-
tration is also used for building a morphable model [5]. It 
can be done by registering the same template onto multi-
ple targets yielding consistent parametrization over all 
scans. For noiseless and complete data, a correct registra-
tion should be one-to-one. In practice, surfaces contain 
holes and artefacts owing to scanning process. Therefore, 
a registration method should be robust to outliers and has 
to fill missing data. Numerous registration algorithms ex-
ist; each of them is applicable to different scenarios and 

has advantages and drawbacks. The proposed approach is 
different to hole-filling methods [6], which are able to 
close holes by interpolating border elements. Methods 
[7, 8] extend the deformation field into regions without 
correspondences. When registering face parts, which may 
move independently, like the lower and upper lips, 
smoothing isotropically throughout the volume [7, 8], 
unwanted effects of tying together unconnected parts ap-
pear. This paper addresses anisotropic regularization, 
which propagates along the surface [10]. To choose a 
mapping from all possible registrations, allowable defor-
mations are constrained by regularization of the defor-
mation field. A common approach is to smooth the de-
formation field by minimizing the squared norm of its 
gradient, effectively allowing locally smooth translations. 
A typical deformation of faces is the mixture of rotation 
and translation; for instance, by lowering the jaw, we 
look for a regularizer that favors rigid deformations. Cur-
vature based registration [10] minimizes the Laplacian of 
deformation field, allowing locally smooth affine trans-
formation. Regularization [11] uses locally different af-
fine transformations for surfaces. Our algorithm uses the 
regularization similar to [9]. We choose spherical subsets 
of the template volume and determine affine transfor-
mation within this region. To get a smooth deformation 
field, the resulting affine transformations are linearly 
combined around the sphere centers. Since affine trans-
formations are determined independently per sphere, the 
resulting deformation is no longer optimal with respect to 
fixed correspondences. Note, that if affine transformation 
is defined for a set of vertices [11], then the transfor-
mation is uniquely determined by the correspondences. In 
[9] each vertex has its own unique transformation. The 
regularizer can be interpreted as a stiffness term. It forces 
neighboring vertices to undergo similar transformations. 
The above-mentioned methods are widely used in human 
face recognition [12 – 19].  
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The distance term [3, 4] is based on the affine point-
to-point approach. The affine point-to-plane approach is 
described in [20 – 23]. In this paper we propose an algo-
rithm to solve the variational problem [3] using the func-
tional with distance and stiffness terms. Computer simu-
lation results are provided to illustrate the performance of 
the proposed method.  

1. Functional for non-rigid affine point-to-point ICP 

Let P = {p1, ..., ps} be a template point cloud, and 
Q = {q1, ..., qs}be a target point cloud in 3. Suppose that 
relationship between points in P and Q is given in such a 
manner that for each point p1  exists the corresponding 
point qi. The ICP algorithm is geometrical transformation 
for rigid objects mapping P to Q: 

iRp t , (1) 

where R is the rotation matrix, t is the translation vector, 
i = 1, ..., s. 

The group of affine transformations in dimension of 
three has 12 generators. It means that the affine transfor-
mation in dimension of three is a function of 12 variables. 

The ICP variational problem for affine transfor-
mations in the non-rigid point-to-point case is formulated 
[3, 4]. We consider the same variational problem as in [3] 
but without the landmark term. Denote by S (P ) and 
S (Q ) surfaces constructed from the clouds P and Q, re-
spectively. Let J (A1, ..., As) be the following functional: 
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where  ,  denotes the inner product, Ai is the matrix of 
affine transformation in the homogenous coordinates: 
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pi and qi are points from the cloud P and Q respectively,  

1 2 3( , , ,1)t
i i i ip p p p , 1 2 3( , , ,1)t

i i i iq q q q . (6) 

E is the set of edges of the triangulated surface S (P ),  is 

the regularization parameter. In the formulas (5), (6) are 

used superscripts for vector and matrix elements. Also, 

subscripts for the numbers of vectors or matrices are 

used. 

The non-rigid affine point-to-point ICP variational 
problem can be stated as follows: 
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2. Computation of gradient of functional J 

Let us compute the gradient of the functional J1  as 

1 1 1 1(( ) ,..., ( ) )sJ J J    . (8) 

Compute the component (J1) s of the functional J1 
gradient as 
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where h is a small variation of the matrix Ak. 
Therefore, the gradient component is defined by the 

following way: 
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Compute the component (J 2) k of the functional J 2 
gradient as 
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where s k is the number of neighbors of the k-th point of 
the triangulated surface S (P ), kj is the j-th neighbor of 
the k-th point of the triangulated surface S (P ). 

We get the following expression for the component 
(J )k of the functional gradient:  
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Denote by Pk and Qk, k = 1, ..., s the following matrices: 

t
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Rewrite (14) as 
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3. Solution to non-rigid affine point-to-point ICP  
with linearization 

We search the solution {Ak}, k = 1, ..., s as a set of lin-
ear functions regarding to –1. Also we consider for auxil-
iary purposes the coefficient of –2. 
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Substitute the expansion of Ak (16) in (15), 
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We solve (15) by the uncertain coefficients method. 
Coefficient of 1 is 
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Suppose that the graph consisting of vertices and edg-
es of the triangulated surface S (P ) is connected. Then it 
follows from (21) that there is a such matrix A0 that  
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We search the matrix A0 from (19). Consider the sum 
of equations in (19), k = 1, ..., s 
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Proposition. The following condition holds: 
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Remark. The obtained (27) is the closed form solution 
of the common affine point-to-point ICP variational prob-
lem [24]. Matrix Pk for any fixed k is not invertible, but 
the sum of all matrices is generally invertible. 

Rewrite (19) as 
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The expression (28) is the nonhomogeneous system of 
linear equations. Consider the corresponding homogene-
ous system, 
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Denote by 1( )gkA  a general solution of the homogeneous 
system (29), by 1( ) pkA  a partial solution of the nonhomoge-
neous system (28). Then the general solution 1
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The partial solution 1( ) pkA  can be obtained with the 
following iterative process: 
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Remark. From results of our experiments it follows 
that the iterative process (31) converges to the partial so-
lution 1( ) pkA . 

The general solution of the homogeneous system can 
be found with the help of (20). Consider the sum of equa-
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Substitute (30) to (37)  
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So, we get the expression for 1
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Therefore the linearized representation of Ak can be 
written as 
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4. Computer simulation 

The performance of the proposed method is compared 
with that of known methods. The method [3] solves var-
iational problem (7) by sequence of matrix transfor-
mations. Denote this algorithm as “M-PPt”. The most 
computationally complex part of the M-PPt is searching 
of the inverse matrix of the size of 4s  4s, where s is the

 number of points of the cloud P. The computation of the 
inverse matrix in program realization of the M-PPt is 
made with the function “PartialPivLU” of the open 
source linear algebra library “Eigen” for C++. We chose 
this function because it has the best speed among consid-
ered program functions.  

The proposed algorithm is referred to as ”L-PPt”. The 
algorithms M-PPt and L-PPt solve the same variational 
problem (7). Both algorithms should ideally return the 
same results if the values of regularization parameter  
coincide. However, the proposed method is approxima-
tion to the exact solution. Therefore, M-PPt ICP and 
L-PPt ICP algorithms can utilize different values of. 
We apply such values of the regularization parameter  to 
obtain the closest results. 

Let the result of the M-PPt algorithm be a set of ma-
trices 1 , ,M M

sA A , the result of the L-PPt algorithm be a 
set of matrices 1 , ,L L

sA A , s be the number of points in 
the cloud P. Denote by D the following matrix: 
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If the absolute values of the matrix D elements are 
sufficiently small, then the results of the M-PPt and L-PPt 
algorithms are geometrically close.  

1. Let P be the template cloud (see fig. 1a), Q be the 
target cloud (see fig. 1b). The cloud P consists of 386 
points. We use for the M-PPt  = 2, for L-PPt  = 20. The 
result P  of the M-PPt is shown in fig. 1c. The result P  
of the L-PPt is shown in fig. 1d. 
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 (а)   (b)   (c)   (d)  
Fig. 1. (a) The template cloud P; (b) the target cloud Q; (c) cloud P  for M-PPt; (d) cloud ' P for L-PPt 

The processing time of M-PPt is 128 439 ms, while 
the processing time of L-PPt is 2 090 ms. 

2. Let P be the template cloud (see fig. 1a), Q be the 
target cloud (see fig. 2b). The cloud P consists of 386 

points. We use for the M-PPt  = 2, for L-PPt  = 20. The 
result P  of the M-PPt is shown in fig. 2c. The result P  
of the L-PPt is shown in fig. 2d. 
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The processing time of M-PPt is 126 170 ms, the pro-
cessing time of L-PPt is 1 830 ms.  

3. Let P be the template cloud (see fig. 3a), Q be the 
target cloud (see fig. 3b). The cloud P consists of 386 
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points. We use for M-PPt  = 4, for L-PPt  = 20. The re-
sult P  of the M-PPt is shown in fig. 3c. The result P  of 

the L-PPt is shown in fig. 3d. 

(а)   (b)   (c)   (d)  
Fig. 2. (a) The template cloud P; (b) the target cloud Q; (c) cloud P  for M-PPt; (d) cloud ' P  for L-PPt 

(а)   (b)   (c)   (d)  
Fig. 3. (a) The template cloud P; (b) the target cloud Q; (c) cloud P  for M-PPt; (d) cloud ' P  for L-PPt 
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The processing time of M-PPt is 129 305 ms, the pro-
cessing time of L-PPt is 1 814 ms. 

4. Let P be the template cloud (see fig. 4a), Q be the 
target cloud (see fig. 4b). The cloud P consists of 386 

points. We use for M-PPt  = 4, for L-PPt  = 20. The re-
sult P  of the M-PPt is shown in fig. 4c. The result P  of 
the L-PPt is shown in fig. 4d. 
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The processing time of M-PPt is 216 509 ms, the pro-
cessing time of L-PPt is 1 899 ms. 

5. Let P be the template cloud (see fig. 5a), Q be the 
target cloud (see fig. 5b). The cloud P consists of 386 

points. We use for M-PPt  = 4, for L-PPt  = 20. The re-
sult P  of the M-PPt is shown in fig. 5c. The result P  of 
the L-PPt is shown in fig. 5d. 

 (а)   (b)   (c)   (d)  
Fig. 4. a) The template cloud P; b) the target cloud Q; c) cloud P  for M-PPt; d) cloud ' P  for L-PPt 

(а)   (b)   (c)   (d)  
 Fig. 5. a) The template cloud P; b) the target cloud Q; c) cloud P  for M-PPt; d) cloud ' P  for L-PPt 
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The processing time of M-PPt is 263 698 ms, the pro-
cessing time of L-PPt is 2 157 ms. 

6. Let P be the template cloud (see fig. 6a), Q be the 
target cloud (see fig. 6b). The cloud P consists of 386 

points. We use for M-PPt  = 4, for L-PPt  = 40. The re-
sult P  of the M-PPt is shown in fig. 6c. The result P  of 
the L-PPt is shown in fig. 6d. 

(а)   (b)   (c)   (d)  
Fig. 6. a) The template cloud P; b) the target cloud Q; c) cloud P  for M-PPt; d) cloud ' P  for L-PPt 
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The processing time of M-PPt is 1 075 841 ms, the 
processing time of L-PPt is 4 725 ms. 

Remark. The experiments show that it is possible to 
find a such value of  that approximates well the algo-
rithms to each other. On the other hand, the L-PPt is 
much faster than the M-PPt. The computational complex-
ity of L-PPt is O (s ), while the computational complexity 
of M-PPt is O (s 

2), where s is the number of cloud points. 

Conclusion 

In this paper, we proposed a computationally efficient 
algorithm for the affine non-rigid point-to-point ICP. At 
each iterative step of the algorithm, approximation of the 
closed-form solution is utilized. Variational functional 
based on the point-to-point metric for affine transfor-
mation is exploited. The proposed algorithm is much 
faster than known methods based on minimization of the 
corresponded functional. For instance, the processing 
time of the M-PPt algorithm program realization utilizes 
the inverse matrix and based on the linear algebra library 
“Eigen” for C++ is 263 698 milliseconds, the processing 
time of the proposed L-PPt program realization is 2 157 
milliseconds, for the considered point clouds. With the 
help of computer simulation, the performance of the pro-
posed method is presented and discussed.  
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