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Abstract 

We propose and numerically verify a design of the photonic integrated circuit for in-plane gen-
eration of a 1st azimuthal order vortex mode in dielectric rectangular waveguides. Radiation is in-
troduced into the proposed structure in a standard way through two grating couplers. Applying a 
mode coupling and specific phase shift, a field with the required amplitude-phase distribution is 
formed directly in the output waveguide. The geometric dimensions of the device are simulated 
and optimized to fit the technological parameters of the silicon-on-insulator platform. 
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Introduction 

In recent years, optical beams carrying orbital angular 
momentum (OAM), so-called optical vortices, have at-
tracted significant attention from researchers due to their 
specific properties. Such beams are characterized by a 
helical wavefront and a phase proportional to exp (i l ϕ), 
where l is an integer known as the topological charge, 
which can take any value. Thus, optical OAM modes 
compose an orthogonal basis that can be applied for fun-
damental improvement of the capacity for fiber optical 
[1], free-space [2, 3], and quantum communications [4, 
5]. Besides, the phase of optical vortices is used for the 
polarizing properties analysis of laser fields. Features of 
sharp focusing of Gaussian-Laguerre vortex laser beams 
for various types of uniform polarization depending on 
the order of the vortex phase is considered in [6]. The de-
tection of the polarization state, as well as the relationship 
between phase and polarization features in optical sys-
tems with a high numerical aperture, are presented in [7, 
8]. Finally, [9] demonstrates the focusing of displaced op-
tical vortices of arbitrary order with different polariza-
tions, and their propagation from the point of view of ca-
tastrophe theory is considered in [10]. 

To date, various applications have been proposed for 
optical vortices including optical tweezers and spanners 
[11 – 15], non-diverging speckles [16], imaging and mi-
croscopy [17 – 20], novel sensing technologies for detect-
ing molecules and nanostructures [21 – 23], object motion 
detection [24, 25]. Consequently, the demand for efficient 
methods of vortex beams generation increases.  

Most methods for generating optical vortices are per-
formed by discrete optical elements and are conventional-
ly divided into two groups: spatial and fiber generating 
methods [26]. The devices from the first group include 
diffractive optical elements [27], cylindrical lens mode 
converters [28], spiral phase plates (SPPs) [29, 30], spa-
tial light modulators [31], metamaterials [32] and q-plates 
[33]. The second group of fiber-based devices like fiber 
grating [34], chirally coupled core fiber [35] or photonic 
lanterns [36] seems to provide more promising solutions 
in terms of system size yet on the millimeter scale. How-
ever, in recent years, solutions based on photonic inte-
grated circuits (PICs) have attracted the greatest interest 
due to their energy efficiency, small size, and perfor-
mance stability. Besides, the available fabrication pro-
cesses of PIC ensure the repeatability in the massive pro-
duction of the developed devices. The OAM modes gen-
erator based on PIC satisfies completely the modern trend 
towards optical integration both in terms of functional 
miniaturization and in terms of multiplexing optical sig-
nals for transmission in a single propagation medium.  

Existing PIC solutions for generation and 
(de)multiplexing of OAM-beams can be divided into two 
groups: out-of-plane and in-plane solutions. The out-of-
plane vortex generation can be implemented by adding an 
integratable vortex generator element at the output port of 
the light source or generating a vortex beam inside the 
light source cavities directly [37]. Among the proposed 
designs there are solutions based on microring resonators 
with angular gratings [38 – 40], free-form metasurfaces, 
which can overcome the microring’s bandwidth limita-
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tion [41], single-mode vertical-cavity surface-emitting la-
ser (VCSEL) or tunable MEMS-based Fabry-Perot filter 
with the dielectric micro-sized SPPs deposited on its top 
[42, 43]. Most methods for out-of-plane generation demon-
strate satisfactory mode purity of the output OAM beam, 
however, its free-space propagation requires a lens to focus 
the signal and couple it into the fiber, which negatively af-
fects the reliability and size of the final device. Another dis-
advantage of this approach is the limited potential for multi-
plexing of optical vortices with different topological charges.  

Regarding the in-plane on-chip solutions, the genera-
tion and propagation of optical vortices are performed in-
side the dielectric waveguides, bringing the advantageous 
possibility to implement a vortex generator as part of 
more complex integrated devices. Obviously, PICs based 
on commercial fabrication processes, which are meant for 
single-mode applications are not suitable for vortex prop-
agation within an integrated waveguide. However, today 
multi-project wafer (MPW) technologies customized for 
the fabrication of waveguides with an increased height 
that can be optimized for vortex beams propagation are 
available [44]. 

To date, several approaches to in-plane vortex genera-
tion have been proposed. In [45] a rectangular waveguide 
based on Silicon-On-Insulator (SOI) platform with a sin-
gle longitudinal trench is used to split the mode degener-
acy and excite two orthogonal LP-like eigenmodes with 
different propagation constants for further synthesis of 
OAM modes with topological charges l = +1 or l = –1. 
Another idea is to use hybrid plasmonic waveguides, e.g. 
in [46] the copper layer is located on top of the silicon 
nanowire with silica spacer between them; in [47] L-
shaped asymmetric copper strip is located on the right top 
of the square silicon core; [48] proposes applying gra-
phene. It should be noted that in the last three works, the 
OAM beam is formed on the longitudinal component of 
the electric field, which complicates its application. An-
other technique utilizes a integrated metasurface for cou-
pling of incident radiation into a fiber [49]. The metasur-
face is represented by a silicon antenna array on the sur-
face of the Si3N4 waveguide. To summarize, the devices 
based on hybrid plasmonic waveguides and metasurfaces 
are very compact, but difficult to be compatible with 
commercial PIC fabrication processes. Such compatibil-
ity is possessed by the design proposed in [50]: radiation 
is injected into two waveguides using edge-coupling 
forming TE01 and TE10 modes, which are subsequently 
combined with a π / 2 or – π / 2 phase shift. However, to 
obtain a vortex beam, the TE00 and TM00 modes are re-
quired to be simultaneously introduced to the edge-
couplers, which also presents certain technological in-
conveniences.  

Thus, to the best of our knowledge, an urgent task to 
develop a PIC for in-plane vortex beams generation, 
which can be manufactured using available MPW tech-
nologies remains unsolved. In this paper, we propose to 
use diffraction gratings for the radiation coupling into the 

PIC, which makes it possible to minimize the number of 
directional couplers. In our approach, the vortex mode is 
generated in the waveguide directly from the beams inci-
dent to the waveguide gratings from standard single-
mode fibers (SMF). A basic description of the proposed 
device is provided in the next section.  

1. Concept and operation principle 

The total view of the proposed device is presented in 
fig. 1. It utilizes the principle of vortex mode generation  
(l = ±1) by coherent superposition in multimode wave-
guide on the two high-ordered TE-like modes (TE01 and 
TE10), one of which is phase-shifted relative to the other 
by π / 2 for positive topological charge and – π / 2 for a 
negative one. The challenging task arising in this ap-
proach is the simultaneous excitation of two high-order 
modes in one waveguide. A consistent solution for gener-
ating the TE01 mode is its conversion from the funda-
mental mode of incident radiation using the grating cou-
pler (GC). Thus, in the proposed device, SMF placed at a 
properly selected tilt to the chip plane feeds the signal to 
the GC applied over an integrated waveguide with a 
width of 10 microns. The trench depth and period of GC 
are optimized for the efficient TE01 mode excitation.  

Generating TE10 directly from a GC is a confusing 
technological problem, for which we propose to use a 
scheme based on a directional coupler (DC). At the first 
step, the fundamental TE00 mode is excited in the upper 
arm of the structure (fig. 1) provided by an optimized 
GC. To convert it into the TE10 mode, we use the princi-
ple of phase matching, which is implemented by selecting 
the widths of two adjacent waveguides so that when en-
ergy is coupled from one to the other, the fundamental 
mode is transformed into the desired one. 

The dispersion relationship, i.e. the dependence of the 
effective refractive index for different modes on the 
waveguide width, calculated for a 500 nm thickness of 
waveguide supporting TE01 mode propagation is shown 
in fig. 2. Following the results obtained, the width of the 
waveguides required for successful conversion is respec-
tively equal to 285.3 nm for TE00 propagating waveguide 
and 610.8 nm for TE10 (grey solid line). 

In fig. 1, the T1 and T2 values determine the taper 
lengths for the TE00 and TE01 modes, respectively. They 
are calculated to provide transmission into narrow wave-
guides with a minimum modal distortion. The DC1 cou-
pler length was determined using a Lumerical EME solv-
er to be 15.8759 μm. The L1 and L4 values determine the 
lengths of the waveguides between the input gratings and 
the tapers. The length L3 is determined from the distance 
between the fibers and the bending radii of the wave-
guides R1 and R2. 

Since the waveguide geometry in the process of chip 
fabrication, in the general case, randomly varies and sta-
tistically relates to the design parameters, the phase of the 
electromagnetic field for the TE00 mode at the DC’s in-
put cannot be accurately determined. Therefore, the pro-
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vision of the necessary phase shift between the TE01 and 
TE10 modes is provided by a phase shifter (curve over in 
the upper arm in fig. 1). 

P.1 in fig. 1 is the cross-section of the target wave-
guide in which the formed vortex mode is observed. The 
gap between the coupler waveguides is 280 nm. Geomet-
ric dimensions of the specific parts of the proposed 
scheme are given in Table 1. 

 
Fig. 1. Total view: L1-L5 – lengths of straight waveguides; T1-

T2 – lengths of tapers; R1-R2 – bend radii;  
DC1 – directional coupler length; P.1 – cross-section 

 of target waveguide 

 
Fig. 2. Dispersion relationship 

Table 1. List of geometric values from Fig. 1 

Dimension Value, µm 
L1 / L2 / L4 10 
L3 26.27 
L5 215 
T1 465 
T2 430 
R1 / R2 50 
DC1 15.87 

2. Numerical simulations 

To ensure the maximum stability of the vortex field 
parameters in the output waveguide, it is necessary to en-
sure the equality of the TE01 and TE10 modes intensities 
in the DC’s section where they will be combined, all 
while the intensity of all other modes is minimized.  

The coupling efficiency of incident radiation into the 
target mode provided by GC is different for the TE00 and 
TE01 modes; therefore, we first optimized the period and 
the tilt of the feeding fiber to the chip plane normal aimed 

at the most efficient excitation of the TE00 mode in the in-
tegrated waveguide, which is due to the complexity of cou-
pling to a fundamental mode in thick waveguides (more of-
ten the thickness of SOI waveguides near 200 nm). 

We use the Lumerical FDTD solver to simulate cou-
pling and get a field distribution in a silicon waveguide. 
Then, we use elaborated scripts for modal decomposition, 
expansion coefficients are obtained from the equation (1): 

   
2

* 2 ,
R

a d   E r E r r  (1) 

where r is the radius vector, E(r) is the output electric 
field vector, Eμν(r) is the waveguide eigenmode electric 
field vectors. 

The simulation results are shown in fig. 3 – 5. The so-
called relative mode purity (RMP) parameter, i.e. a ratio 
of target mode amplitude (TE00 in our case) to the sum 
of parasite modes amplitudes is presented in fig. 3. 

 
Fig. 3. Relative mode purity for TE00 excitation case 

 
Fig. 4. Total transmission for TE00 excitation case 

Fig. 4 shows the total power transmission, in other 
words, the coupling efficiency of the input Gaussian beam 
to the waveguide’s fundamental TE00 mode, while fig. 5 
demonstrates RMP multiplied by amplitude transmission. 

The optimal parameters are the period 497 nm, the tilt of 
the fiber 10 degrees. Based on the technological feasibility, 
the trench depth of the grating is taken equal to 20 % of the 
waveguide thickness. Since the simultaneous feeding of two 
gratings requires the arrangement of an array of fibers next 
to the chip, to make it technologically feasible it is necessary 
to ensure the same fiber tilt for both GCs. The performed 
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numerical simulation showed that this parameter insignifi-
cantly affects the efficiency of TE01 mode excitation; there-
fore, we adopt the same tilt of 10 degrees for both fibers. 

The geometry of the GC for the TE01 mode excitation 
is numerically optimized to ensure maximum mode puri-
ty and equal coupling efficiency for the TE00 and TE01 
modes. The simulation results for a filling factor set to 
0.65 are shown in fig. 6, 7. 

Fig. 6 represents the period dependence of target 
TE01 mode and the sum of parasite modes, and fig. 7 
shows the power transmission. According to the results, 
we chose 660 nm due to the relatively high mode purity 
and satisfying power transmission (close to the TE00 
coupling power transmission). 

 
Fig. 5. Modal efficiency of TE00 excitation 

 
Fig. 6. Efficiency of TE01 excitation on grating period 

 
Fig. 7. Total transmission for TE01 excitation case 

 (a)     (b)  

(c)     (d)  
Fig. 8. Mode fields at the structure output: (a) amplitude and (b) phase for l = + 1; c) amplitude and d) phase for l = – 1 

The simulation results of the electromagnetic field ob-
tained at the output of the proposed PIC design after apply-
ing the required phase shift are provided in fig. 8. As we see, 
the amplitude distributions for both + 1 and – 1 OAM states 
have clearly distinguished zero intensity at the center of the 
waveguide. Also, the phase distribution demonstrates a 
steady phase change from + π to – π. It is quite obvious that a 
vortex is generated at the output of the device. 

Both bandwidth purity analysis of OAM states, as 
well as beam power, are represented in fig. 9. It can be 
seen that the proposed device can be used in a wide range 
of wavelengths in the C-band, however, the maximums of 
power transmission and OAM purity do not coincide. 
Therefore, the actual range of applicability of the device 
depends on the practical requirements for the output pa-
rameters. 
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Conclusion 

In this paper, we propose a chip design for exciting a 
first-order optical vortex mode inside an integrated sili-
con waveguide. The optical vortex mode is combined of 
the TE10 and TE01 modes having a relative phase shift 
of π / 2 in a single waveguide. To implement this, we ap-
ply two waveguides of different widths, in which the 
TE00 and TE01 modes are excited from the incident radi-
ation based on the grating coupler. The waveguides are 
coupled together providing a complete coupling of the 
TE00 mode from the first one to the TE10 mode in the 
second one. The geometric parameters of the elements, as 
well as the fiber tilt, are optimized through numerical simu-
lation considering the options of the silicon-on-insulator fab-
ricating technology. Moreover, the proposed method for cal-
culating and optimizing the structure can be applied to other 
technological platforms that support grating couplers. 

 
Fig. 9. OAM state purity and power transmission  

versus wavelength 
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