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Abstract 

The computed tomography allows to reconstruct the inner morphological structure of an object 
without physical destructing. The accuracy of digital image reconstruction directly depends on the 
measurement conditions of tomographic projections, in particular, on the number of recorded pro-
jections. In medicine, to reduce the dose of the patient load there try to reduce the number of 
measured projections. However, in a few-view computed tomography, when we have a small 
number of projections, using standard reconstruction algorithms leads to the reconstructed images 
degradation. The main feature of our approach for few-view tomography is that algebraic recon-
struction is being finalized by a neural network with keeping measured projection data because the 
additive result is in zero space of the forward projection operator. The final reconstruction presents 
the sum of the additive calculated with the neural network and the algebraic reconstruction. First is 
an element of zero space of the forward projection operator. The second is an element of orthogo-
nal addition to the zero space. Last is the result of applying the algebraic reconstruction method to 
a few-angle sinogram. The dependency model between elements of zero space of forward projec-
tion operator and algebraic reconstruction is built with neural networks. It demonstrated that reali-
zation of the suggested approach allows achieving better reconstruction accuracy and better computa-
tion time than state-of-the-art approaches on test data from the Low Dose CT Challenge dataset 
without increasing reprojection error. 
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Introduction 

X-ray computed tomography (CT) is the widely used 
non-destructive method for reconstructing the internal 
structure of an object. In medicine, CT is used for a non-
invasive examination of the body structure [1]. This 
makes it possible to diagnose diseases such as cancer and 
COVID-19. However, a large absorbed dose of X-ray is 
harmful to human health. Therefore, it strives to mini-
mize the dose of X-ray radiation received by a patient, 
but so that, based on the result of the reconstruction, the 
doctor can determines pathology and sets a diagnosis. 
The received dose is reduced, for example, in the follow-
ing two ways: by decreasing the number of measured 
projections [2] and by decreasing the exposure time of 
measurement. 

Reducing the exposure time of measurement leads to 
increase noise in the recorded data. As a consequence, 

this leads to noisy reconstruction. For noise suppression, 
algorithms of the following classes are used: based on 
statistical analysis, nonlinear filters, iterative optimization 
algorithms, and neural networks. With noisy data, neural 
networks can be as a noise reduction operation after re-
construction [3, 4] (post-processing), as a noise reduction 
operation on a set of projections (pre-processing) [5], and 
as a full-reconstruction operator [6, 7]. To solve these 
problems various neural network architectures are used, 
for example, convolutional neural networks [8], neural 
networks operating in wavelet space [9] (post-processing 
noise suppression), networks operating both in the recon-
struction space and measured data space [7], generative neu-
ral networks (post-processing noise reduction) [10]. 

The reconstruction problem in 2D case can be repre-
sented as follows. We denote by R the 2D distribution of 
the linear absorption coefficient of the investigated ob-
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ject, A is the linear operator connecting R with a set of 
projections (sinogram). AR is the sum of linear absorption 
coefficient along trajectory ray describing the passing X-
ray through the object. Since the sinogram is recorded 
with a certain error v, the measured value is presentedin 
the following form 

P = AR + v. (1) 

The reconstruction goal is to estimate R from P. Typi-
cally, the 2D distribution of the linear absorption coeffi-
cient is specified in the form of an image represented by a 
limited number of pixels, the values of which correspond 
to linear absorption coefficients, and, as rule, it also ex-
ceeds the number of registered projections pixels. The 
values of the measured projections P and the reconstruc-
tion values R are assumed to be the Euclidean vectors, 
then due to the linearity of the transformation A and that 
dimensionality of P is less than R, the euclidean space of 
all images can be represented as the sum of zero-space of 
operator A. N (A) = x : Ax = 0 and orthogonal addition 
N⊥(A) to this space, moreover, NA is no-zero dimensional-
ity linear space, and R can be represented as the sum 

R = RN + R, (2) 

where RN
  N (A) and R  N (A) are orthogonal, 

moreover, 

ARN
 = 0. (3) 

Then in (1) 
P = AR + v = AR + v, (4) 

where and P does not depend from RN. This means that if 
additional information did not used, then by measuring P 
only the R component of the estimated image R can be 
reconstructed, and the RN component cannot be recon-
structed, since RN information is not contained in P. 
Therefore, for a qualitative reconstruction, the measurement 
model (1) must be supplemented with some information 
about the RN component, if the R estimate obtained from 
the measurement (1) is known. For this, the model of the 
dependency between the orthogonal components RN and 
R of the image R should be built. When using machine 
learning methods, we trained this dependency model by 
the neural network from a set of example pairs of P and R 
from the Low Dose CT Challenge dataset [11]. In our 
approach information on the R component of the image 
R is taken from standard reconstruction methods and sup-
plemented with data on the component RN, obtained from 
the R to RN dependency model constructed by an artifi-
cial neural network. 

1. Existence of RN and its properties 

If sinogram P is calculated from R in computation ex-
periment with negligible error, then RN component of the 
R image can be computed according equation 

P = AR, (5) 

then R can be calculated using a pseudo solution of 
equation (5): 

R= A−P, (6) 
where A− is the operator, pseudo-inverse to and R⊥ can be 
obtained as a solution to the minimum problem [12, 13] 

2inf || || ,
R

P AR  (7) 

where the square of the norm is calculated as the sum of 
the squares of all coordinates of the vector P . Then the 
component RN is calculated as the difference 

RN
 = R − R. (8) 

To solve the problem (7), for example, the SIRT 
method is used [14]. In practice, noise-distorted sino-
grams are often event; it makes problems. There are 
widely used FBP reconstruction algorithm. In this al-
gorithm, a sinogram is filtered with the ramp filtering 
operation [15] and the result is backprojected. Another 
approach based on iterative algorithms for algebraic re-
construction (for example SIRT [16]) is convenient for 
solving regularized versions of the problem (7), in 
which the functional 

2 2inf || || || || , 
R

P AR w DR  (9)  

where D is linear operator, for example, differentiation, w is 
normalization coefficient. The solution to the problem (5) 
can be present in the form 

Rw
 = (A2 + wD2) − AP. (10) 

It belongs to N (A) for D = I, however, now Rw is not 
exactly equal to R and differs from R, the more, the less 
w > 0. Correctly chosen regularization will allow to ob-
tain the estimation closest to R⊥. If there is an error v0 
when registering the sinogram P in (1) and with a small 
number of angles, the reconstruction quality turns out to 
be low when using the FBP algorithm and when using 
iterative algorithms. The difference between the Phantom 
and the SIRT reconstruction of the few-angle sinogram of 
the Phantom is shown in fig. 1. RN is 

RN = Phantom − R . (11) 

It can be seen that the component RN is very signifi-
cant. As the initial data, we used a sinogram obtained by 
a detector of 512 pixels; measurements are made at 64 
angles. The size of the reconstructed image is 512 × 512. 
Thus, with a small number of angles and an error, a 
mathematical model is needed that allows one to estimate 
the RN component from the measuring component R. In 
this work, the selection of such a model will be carried 
out by training a neural network. 

2. Training data 

To demonstrate the effectiveness of the proposed ap-
proach, two neural networks were trained: LPDR and our 
network. The neural network train- ing was carried out on 
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an open dataset Low Dose CT Challenge [17]. This da-
taset consists of X-ray views of the human body from 
medical tomographs and full and quaternary X-ray recon-
structions. In total, the set contains data from 156 patients 
of various ages and health conditions. Full dose and qua-
ternary dose reconstructions were constructed for one patient 
at the same time. For each patient, there were around 300 

full doses and 300 low doses reconstructed images of the 
inner structures of their bodies. In addition, these recon-
structions are linked with each other layer-by-layer, 
which makes it possible to train neural networks on the 
provided set of data pairs. Reconstructions from the Low 
Dose CT Challenge set are shown in Fig. 1. All recon-
structions width in the dataset is 512 pixels. 

 
Fig. 1. Phantom - an example of a full-dose reconstruction presented in the dataset Low Dose CT Challenge [12].  

SIRT - SIRT reconstruction from sinogram calculated with 64 projections from the Phantom.  
Sinogram is calculated with 64 projections from the Phantom 

To investigate the problem of few-view tomography, 
sinograms with 64 projections were generated by reprojec-
tion from full-dose reconstructions. With the help of the 
constructed projections, the reconstruction was carried out 
by the SIRT algorithm. With 20 iterations of the SIRT al-
gorithm, the reprojection error is less than 1e-8 in the l2 
metric. For a hypothetical 16 bit X-ray detector, their value 
step is 1 / 216 = 1.5e – 5. Our reprojection error is less than 
then a step of a hypothetical 16 bit detector, then on the 
measured sinogram by this detector, we could not detect 
reprojection error. Examples of Phantom, SIRT reconstruc-
tion from the calculated sinogram, the 64 angles calculated 
sinogram from the Phantom are shown in fig. 1. Calculated 
reconstructions and sinograms from full-dose images of the 
dataset Low Dose CT Challenge were used as data for train-
ing neural networks. It can be seen that the SIRT recon-
struction in fig. 1 has easily distinguishable artifacts, for 
example, radial rays coming from the center of the recon-
struction and general blurring of the reconstructed image. 

3. Suggested approach realization with neural networks 

The diagram of an algorithm that implements the pro-
posed approach is shown in fig. 2. It contains three stag-
es: interpolation in Fourier space (Conv Net 1), U-Net, 
and fix reprojection error in Fourier space (Conv Net 2 
and FT Mul 3). All stages contain networks. The SIRT 
reconstruction is used as network input to calculate an 
additive to this SIRT reconstruction. According to the 
Projection Slice theorem [18], projections can be represented 
in a Fourier space. Each Fourier transformed projection is 
presented in the form of a straight line on the image in 
this space and the direction of their line corresponds to 
the projection angle. 2D inverse Fourier transformed im-

age from this space is reconstructed image. This means, 
what would a sinogram pixel from the Additive result 
(fig. 2) has zero value, it needs to the Fourier image of 
the Additive result must have zero values in lines corre-
sponding to projections of the sinogram by Project Slice 
theorem. In our approach, we use this corollary of the 
Projection Slice theorem to normalize U-Net output to the 
trained pixel-by-pixel normalization FT Mul 3. Normali-
zation is performed by multiplying the input image by 
pixel by the FT Mul 3 image of the same size. In this 
case, the values of the pixels of the FT Mul 3 image lie in 
the range from 0 to 1. This is done to zero out those pix-
els of the Fourier transform of the additive that corre-
spond to any projection line. Conv Net 1 and Conv Net 2 
is a simple stacked convolutional neural network that 
allows to make local interpolation in Fourier space be- 
fore U-Net and after U-Net, which improves results. 
Conv nets outputs are also normalized by pixel-by-pixel 
trained normalization FT Mul and FT Mul 2, the same as 
FT Mul 3. Normalization FT Mul and FT Mul 2 are 
needed to weaken convolutional neural network artifacts 
that arise due to nonzero values of the Fourier transform 
near the boundaries of its definition field and for sup-
pressing changing of original data for Conv Net 1 output. 
The central block of network architecture – U-Net - was 
selected because this network often is used in image 
transformation tasks, has low overfitting ability, and can 
capture features of images in all scales. Last is important 
because on our SIRT reconstruction there can be artifacts 
scales to the full image, for example, linear artifacts. The 
exact architectures of U-Net, ConvNet 1, Con- vNet 2, as 
well as the entire network, are described using the 
PyTorch library at the link https://github.com/ayamaev-
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se/ComputerOptics LRFR.git. The full neural network 
was trained using the following loss function 

     2   2 , 0.1||
, ,

|| || ||
( )





    
 

N N N

N

Loss R R R R R FP R
SSIM R R R

 (12) 

where RN is the result of the calculated proposed neural 
network from R, R is the SIRT reconstruction, R is the 
phantom, FP is the forward projection operation. The norm 
from images is the per-pixel l2 norm. The neural network 

was trained using the AdamW optimization algorithm with 
cosine reduction learning rate [19]. The initial learning rate 
lr was 1e – 3. Validation loss function stopped increasing 
after 20 epoch of neural network training. Under our exper-
iments, we observed that there were better metrics values 
for our approach after training with our loss function. But 
there were worse metrics values for LPDR with our loss 
function than the standard MSE loss function. In this case, 
we used usually the trained LPDR network. 

 
Fig. 2. Architecture of suggested approach 

4. Results 

On the Low Dose CT Challenge data, neural network 
from Learned Primal-Dual Reconstruction (LPDR) and a 
neural network from the pro- posed approach (LRFR - 
Learned Residual Fourier Reconstruction) were trained 
for the problem of few-view tomography. Examples of 
reconstruc- tions obtained using these networks are 
shown in fig. 3. It can be seen that the LPDR approach 
slightly retained the radial artifacts associated with low- 
angle tomography, which is not observed in the recon-
struction of the image. Networks were tested on a part of 
patients which shown in Tab. 1. Also, the calculated met-
rics of working time and quality on the test sample are 
indicated in the tab. 2. As can be seen from the tab. 2, the 
proposed approach shows a higher reconstruction accuracy 
using the SSIM, PSNR met- rics and a shorter reconstruc-
tion time per image. Also, LPFR has a smaller count of 
additive and multiplication operations, but it has a bigger 
count of trainable parameters. To measure the reconstruc-
tion time, a computer with an AMD Ryzen 7 2700× pro-
cessor and an Nvidia Titan Xp GPU was used. Fig. 4 
shows the trained matrix FT Mul 2. As a result of train-
ing, some of the matrix elements FT Mul 2 lying on 
straight lines were zeroed. These matrix elements corre-
spond to the projection lines from the Projection slice 
theorem. Therefore, following the theorem, LRFR lies in 
the zero space of the projection operator with some error. 

As you can see from the tab. 2, the reprojection error is 
3e-6 in the l2 metric. 

Tab. 1. Patient codes for neural network testing 

Patient code 
C002 
C012 
C027 
C050 
C067 
C081 
C099 
C111 
C121 
C128 

Tab. 2. Results 

Approach LPDR LRFR (Ours) 

PSNR 37.55 38.06 

SSIM 0.879 0.891 
Time per image 
(msec) 154 108 

Reprojection MSE 2e – 5 3e – 6 

Trainable params 2.5e + 5 7.3e + 6 

Operation count 6e + 11 3e + 11 



http://www.computeroptics.ru journal@computeroptics.ru 

426 Computer Optics, 2022, Vol. 46(3)   DOI: 10.18287/2412-6179-CO-1035 

 
Fig. 3. Results. A slice of the torso is shown in this images. It 
can be seen that our approach is smoother and detailed than  

the LPDR result 

Conclusion 

In this work we presented the approach for construct-
ing reconstructions from the small number of projections. 
The approach consists in the algebraic reconstruction 
with subsequent processing by the neural network, which 
in- cludes the computation in Fourier space. The repro-
jection error of our result is 3e – 6, which is less than 
1.5e – 5, the step of a hypothetical 16-bit X-ray detector. 
Consequently, there will be no differences between the 
sinogram constructed by reprojection from the recon-
struction and the sinogram measured by a detector. The 
implementation of the proposed approach shows the 

state-of-the-art results of reconstructions according to the 
PSNR and SSIM metric and has a shorter running time 
than the similar approach. Moreover, due to a specially 
selected architecture that minimizes the reprojection er-
ror, the proposed approach is fundamentally less inclined 
to create non-existent objects for reconstruction. Since 
the reprojection error of our approach is less than the step 
of the hypothetical 16-bit X-ray detector step = 1 / 216, the 
neural network’s response lies in the zero space of this 
hypothetical detector. We suppose, that our network is 
useful for medical application because small reprojection 
error makes the network safer to add and remove elements in 
the reconstructed image displayed in the original projec-
tions. At the moment, about 80 percent of LRFR’s time is 
spent on creating SIRT reconstruction. In the future, we 
plan to explore the possibility of creating fast reconstruc-
tion algorithms for few-view tomography with zero 
reprojection error, if the pro- posed method would be 
enhanced in terms of performance. For example, it can be 
single step algorithms or accelerated SIRT by fast linear 
summations [20]. 

 
Fig. 4. FT Mul 3 values from network architecture. It can be 

seen that the image contains zero lines that it is agreed with the 
Projection Slice theorem 

Discussion 

The suggested approach is based on the Projection 
Slice theorem and theory of Measuring computing sys-
tems. Realization of the approach gives around zero error 
in reprojection by per-pixel normalization on the Fourier 
space. Also, it contains interpolating in Fourier and Re-
construction spaces. 

Its first approach, which works in zero space of the 
forward projection operator and in Fourier space of Re-
construction space. 
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