One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric
P.N. Dyachenko, Yu.V. Miklyaev

South Ural State University (SUSU)

Full text of article: Russian language.

Abstract:
This paper investigates a one-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric. The effect occurred in splitting a single zone into polariton and structure forbidden photonic band is predefined.  The structure forbidden photonic band is distinguished in its behavior if the concentration of metal nanoparticles changes depending on the position to the polariton forbidden photonic band. Considered effects allow us to extend opportunities for creating new photonic crystals with given properties.

Key words:
one-dimensional photonic crystal, nanocomposite of metal nanoparticles and dielectric, forbidden photonic band.

Citation:
Dyachenko PN, Miklyaev YuV. One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric [In Russian]. Computer Optics 2007; 31(1): 31-34.

References:

  1. Joannopoulos JD, Meade RD, Winn JN. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Singapore, 1999.
  2. Bykov VP. Spontaneous emission in a periodic structure. Sov. Phys. JETP 1972; 35: 269-273.
  3. Yablonovich E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987; 58: 2059-2061.
  4. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987; 58: 2486-2488.
  5. Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 1990; 65: 3152-3155.
  6. Sharp DN, Turberfield AJ, Denning RG. Holographic photonic crystals with diamond symmetry. Phys. Rev. B 2003; 68: 205102-205108.
  7. Fan S, Villeneuve PR, Joannopoulos JD. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 1996; 54: 11245-11251.
  8. Wang Z, Chan CT, Zhang W. et al. Threedimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B 2001; 64: 113108-113113.
  9. Gantzounis G, Stefanou N, Yannopapas Y. Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide. J. Phys.: Condens. Matter 2005; 17: 1791-1802.
  10. Kittel C. Introduction to Solid State Physics. 7th ed. Wiley, New York, 1966.
  11. Siglas MM, Soukoulis CM, Chan CT, et al. Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials. Phys. Rev. B 1994; 49: 11080-11087.
  12. Huang KC, Bienstman P, Joannopoulos JD, et al. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys. Rev. Lett. 2003; 90: 196402-196406.
  13. Runs A, Ribbing CG. Polaritonic and photonic gap interactions in a two-dimensional photonic crystals. Phys. Rev. Lett. 2004; 92: 123901-123905.
  14. Oraevskii AN, Protsenko IE. High refractive index and other optical properties of heterogenic media [In Russia]. JETP Letters 2000; 72: 641-646.
  15. Oraevskii AN, Protsenko IE. Optical properties of heterogeneous media [In Russia]. Quantum Electronics 2001; 31: 252-256.
  16. Johnson PB, Christy RW. Optical constant of the noble metals. Phys. Rev. B 1972; 6: 4370-4379.
  17. Levy O, Bergman DJ. Clausius-Mossotti approximation for family of nonlinear composites. Phys. Rev. B 1992; 46: 7189-7192.
  18. Taflove A. Computational Electrodynamics: The FiniteDifference Time-Domain Method. Artech House INC, Norwood, 1995 .

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20