Magneto-optical effects in diffraction gratings associated with the Rayleigh-Wood anomalies and plasmon excitation
V.I. Belotelov, E.A. Bezus, D.A. Bykov, L.L. Doskolovich, V.A. Kotov, A.K. Zvezdin

Moscow State University (MSU), Moscow, Russia,

General Physics Institute of the Russian Academy of Sciences (GPI RAS), Moscow, Russia,

Image Processing Systems Institute оf the RAS, Samara, Russia,
Samara State Aerospace University (SSAU), Samara, Russia

Full text of article: Russian language.

Resonant magneto-optical properties of subwavelength diffraction gratings with a uniformly magnetized dielectric substrate layer are studied. Special attention is given to the Rayleigh-Wood anomalies. It is found that at excitation frequencies of a surface plasmon the Faraday angle resonance is observed. Opportunities of the influence on magneto-optical effects is shown using nanostructures.

Key words:
Magnetooptics, diffraction grating, resonance.

Belotelov VI, Bezus EA, Bykov DA, Doskolovich LL, Kotov VA, Zvezdin AK. Magneto-optical effects in diffraction gratings associated with the Rayleigh-Wood anomalies and plasmon excitation [In Russian]. Computer Optics 2007; 31(3): 4-8.


  1. Dötsch H, Bahlmann N, Zhuromskyy O et. al. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 2005; 22(1): 240-253.
  2. Zvezdin AK, Kotov VA. Modern Magneto-Optics and Magneto-Optical Materials. IOP publishing, Philadelphia, 1997.
  3. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through subwavelength hole arrays. Nature 1998; 391: 667.
  4. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, New York, 1988.
  5. Lomakin V, Michielssen E. Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs. Phys. Rev. B 2005; 71: 235117.
  6. Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Optics Express 2004; 12(16): 3629-3651.
  7. Inoue M, Arai K, Fujii T, Abe M. One-dimensional magnetophotonic crystals. J. Appl. Phys 1999; 85: 5768-5770.
  8. Kochergin VE, Toporov AYu, Valeiko MV. Polariton enhancement of the Faraday magnetooptic effect [In Russian]. JETP Letters 1998; 68(5): 376-380.
  9. Sepulveda B, Lechuga LM, Armelles G. Magnetooptic Effects in Surface-Plasmon-Polaritons Slab Waveguides. J. Lightwave Techn. 2006; 24(2): 945.
  10. Strelniker YM, Bergman DJ. Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field. Phys. Rev. B 1999; 59: R12763-R12766.
  11. Diwekar M, Kamaev V, Shi J, Vardeny ZV. Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films. Appl. Phys. Lett. 2004; 84: 3112.
  12. Belotelov VI, Doskolovich LL, Kotov VA, Zvezdin AK. Magnetooptical properties of perforated metallic films. JMMM 2007; 310(2): e843-e845.
  13. Belotelov VI, Doskolovich LL, Zvezdin AK. Extraordinary Magneto-Optical Effects and Transmission through Metal-Dielectric Plasmonic Systems. Phys. Rev. Lett. 2007; 98: 77401.
  14. Belotelov VI, Doskolovich LL, Kotov VA, Bezus EA, Bykov DA, Zvezdin AK. Magnetooptical effects in the metal-dielectric gratings. Optics Communications 2007; 278: 104-109.
  15. Tomita S, Kato T, Tsunashima S, Iwata S. Magneto-Optical Kerr Effects of Yttrium-Iron Garnet Thin Films Incorporating Gold Nanoparticles. Phys. Rev. Lett. 2006; 96: 167402.
  16. Lord Rayleigh On the Dynamical Theory of Gratings. Proceedings of the Royal Society of London 1907; 79(532): 399-416.
  17. Wood RW. Anomalous Diffraction Gratings. Phys. Rev. 1935; 48: 928-936.
  18. Fano VU. Ann. Phys. 1938; 32: 393.
  19. Hessel A, Oliner AA. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 1965; 4: 1275-1297.
  20. Bjork RH, Karakashian AS, Teng YY. Behavior of surface-plasma oscillations on grating surfaces. Phys. Rev. B 1974; 9: 1394-1401.
  21. Neviere M, Maystre D, Vincent P. Determination of the leaky modes of a corrugated waveguide: application to the study of anomalies of dielectric coated gratings. J. Opt. 1977; 8: 231-242.
  22. Popov E, Tsonev L, Maystre D. Lamellar metallic gratings anomalies. Appl. Opt. 1994; 33: 5214.
  23. Wendler L, Kraft T, Hartung M, Berger A, Wixforth A, Sundaram M, English JH, Gossard AC. Optical response of grating-coupler-induced intersubband resonances: The role of Wood's anomalies. Phys. Rev. B 1997; 55: 2303-2314.
  24. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995; 12: 1077.
  25. Li L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A: Pure Appl. Opt. 2003; 5: 345-355.
  26. Palik D. Handbook of optical constants of solids. Edward.Academic press, Inc. Orlando, Florida, 1985.
  27. Steele JM, Moran CE, Lee A, Aguirre CM, Halas NJ. Metallodielectric gratings with subwavelength slots: Optical properties. Phys. Rev. B 2003; 68: 205103.
  28. Sarrazin M, Vigneron J-P, Vigoureux J-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 2003; 67: 085415.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20