Low-coherent autocorrelation interferometry of scattering and layered media
V.V. Lychagov, D.V. Lyakin, M.D. Modell, V.P. Ryabukho

Institute of Precision Mechanics and Control of the RAS, Saratov, Russia,
Saratov State University, Saratov, Russia,

Harvard Medical School, Harvard, USA

Full text of article: Russian language.

Abstract:
We propose a new method of low-coherent interferometry of scattering and layered media. In this method, optical field with a short temporal coherence length scattered on a sample is directed into the longitudinal  scanning Michelson interferometer for auto-correlation analysis. Object under study is placed outside of the interferometer, and the reference light beam is not required. This method allows us to measure optical thicknesses of layers of a three-dimensional structure of transparent and scattering media. We propose an approximate theory for three-dimensional layered objects with both reflecting properties slowly varying with depth, and sharp boundaries. We discuss possible applications and optical design along with the results of experiments with layered and scattering samples.

Key words:
low-coherent interferometry, Michelson interferometer, scattering and layered media.

Citation:
Lychagov VV, Lyakin DV, Modell MD, Ryabukho VP. Low-coherent autocorrelation interferometry of scattering and layered media [In Russian]. Computer Optics 2007; 31(3): 40-51.

References:

  1. Ivanov AP, Chaikovsky AP, Kumeisha AA. Interferometric technique for scattering objects [In Russian]. DAN BSSR (Proceedings of the Academy of Sciences of the Byelorussian Soviet Socialist Republic) 1979; 23(6): 503-506.
  2. Vlasov NG, Semenov EG, Sokolova ME. Study of scattering media and visualization of phase objects in partially coherent radiation [In Russia]. Holography and its application. Proceedings of the 17th All-Union Holography School. Leningrad Nuclear Physics Institute 1986; 184-197.
  3. Youngquist RC, Carr S, Davies DEN. Optical coherence domain reflectometry: A new optical evaluation technique. Opt. Lett. 1987; 12(3): 158-160.
  4. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 1988; 13(3): 1867-1869.
  5. Hitzenberger CK. Measurement of corneal thickness by low-coherence interferometry. Appl. Opt. 1992; 31(31): 6637-6642.
  6. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995; 117:43–48.
  7. Fercher AF, Hitzenberger CK, Drexler W. Ocular partial coherent interferometry. Proc. SPIE: CIS Selected Papers “Coherent-Domain Methods in Biological Optics” 1996; 2732: 210-228.
  8. Morgner U, Drexler W, Kartner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG. Spectroscopic optical coherence tomography. Opt. Lett. 2000; 25(2): 111-113.
  9. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. Journal of Biomedical Optics 2002; 7(3): 457–463.
  10. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography - principles and applications. Report Prog. Phys. 2003; 66: 239-303.
  11. Ivanov VV, Markelov VA, Novikov MA, Ustavschikov SS. Differential low-coherence interferometry for in-situ diagnostics of transparent structures. Technical Physics Letters 2004; 30(5): 389-391.
  12. Kononenko VV, Konov VI, Pimenov SM, Volkov PV, Goryunov AV, Ivanov VV, Novikov MA, Markelov VA, Tertyshnik AD, Ustavschikov SS. Control of laser machining of polycrystalline diamond plates by the method of low-coherence optical interferometry. Quantum Electronics 2005; 35(7): 622-626.
  13. Gladkova ND, Sergeyev AM. Handbook of Optical Coherence Tomography [In Russian]. Moscow: “Fizmatlit” Publisher 2007.
  14. Ryabukho VP, Lyakin DV. The effects of longitudinal spatial coherence of light in interference experiments. Optics and Spectroscopy 2005; 98(2): 273-283.
  15. Ryabukho VP, Lyakin DV, Lychagov VV. Longitudinal purely spatial coherence of a light field. Optics and Spectroscopy 2006; 100(5): 724-733.
  16. Ryabukho VP, Lyakin DV, Lychagov VV. What type of coherence of an optical field is observed in a Michelson interferometer. Optics and Spectroscopy 2007; 102(6): 918-926.
  17. Bohren C, Huffman D. Absorption and scattering of light by small particles. Wiley-VCH, 1983; 533 p.
  18. Trouthman TS, Barton JK, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Opt. Lett. 2007; 32(11): 1438-1440.
  19. Khlebtsov NG, Bogatyrev VA, Dykman LA, Khlebtsov BN. Plasmon-resonant nanoparticles for biodiagnostic and medicine [In Russian]. Nanotechnics 2007; 10: 77-91.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20