Modeling of light propagation in metallic nanorod arrays
D.V. Nesterenko, V.V. Kotlyar

Image Processing Systems Institute of the RAS,
S.P. Korolyov Samara State Aerospace University

Full text of article: Russian language.

Abstract:
The propagation of transverse magnetic and transverse electric polarized light in periodic array of metallic nanorods of various radii in dielectric slabs was studied. The transmission and reflection of structure with nanorod arrays calculated by hybrid finite element method and boundary element method approach were compared with results of modeling the slab with effective permittivity estimated by nonlocal homogenization theory.

Key words:
metamaterials, homogenization, effective medium theory.

Citation: Nesterenko DV, Kotlyar VV. Modeling of light propagation in metallic nanorod arrays. Computer Optics 2008; 32(4): 337-42.

References:

  1. Abeles F. Optical properties of discontinuous thin films and rough surfaces of silver. Advances in solid state physics. Braunschweig: Vieweg 1984; 24: 93-117.
  2. Taleb A. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys. Rev. B 1999; 59(20): 13350-13358.
  3. Yannopapas V. Scattering and absorption of light by periodic and nearly periodic metallodielectric structures. Opt. Q. Electr. 2002; 34(1-3): 227-234.
  4. Zhang WY. Robust photonic band gap from tunable scatterers. Phys. Rev. Lett. 2000; 84(13): 2853-2856.
  5. Maxwell-Garnett JC. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London Ser. A 1904; 203: 385-420.
  6. Sukhov SV. Nanocomposite material with the unit refractive index. Quantum Electronics 2005; 35(8): 741-744.
  7. Rahachou AI, Zozoulenko IV. Light propagation in nanorod arrays. J. Opt. A: Pure Appl. Opt. 2007; 9: 265-270.
  8. Markos P, Soukoulis CM. Absorption losses in periodic arrays of thin metallic wires. Opt. Lett. 2003; 28(10).
  9. Popov E, Enoch S. Mystery of the double limit in homogenization of finitely or perfectly conducting periodic structures. Opt. Lett. 2007; 32(23).
  10. Silveirinha MG. Nonlocal homogenization model for a periodic array of ε-negative rods. Phys. Rev. E 2006; 73: 046612.
  11. Silveirinha MG. Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Phys. Rev. B 2007; 75: 035108.
  12. Kelly K. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003; 107: 668-677.
  13. Quidant R. Frustrated energy transport through micro-waveguides decorated by gold nanoparticle chains. Europhys. Lett. 2004; 66(6): 785–791.
  14. Nesterenko DV, Kotlyar VV. Hybrid finite element method and boundary element method for analysis of light diffraction on diffraction gratings [In Russian]. Computer Optics 2008; 32(3): 238-245.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20