The comparative analysis of the intensity distributions formed by diffractive axicon and diffractive logarithmic axicon
S.N. Khonina, S.A. Balalaev

Image Processing Systems Institute of the RAS,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
By means of numerical simulation comparison of two types diffractive axicons - linear and logarithmic - under characteristics of formed distributions of intensity both longitudinal, and cross-section is conducted. Depth of axial focusing and width of a formed light spot or the central light ring (for vortical axicons) were estimated. Advantages of logarithmic axicon in compare with linear axicon are shown at formation of narrow axial light threads and tubes: there is not only uniformity of intensity distribution along an optical axis, but also essential increase of a focal zone.

Key words:
limited nondiffractive beams, diffractive linear (conical) axicon, diffractive logarithmic axicon, focal depth, focal spot size.

References:

  1. McLeod J.H., The axicon: a new type of optical element, J. Opt. Soc. Am. 44, 592–597 (1954).
  2. R. M. Herman and T. A. Wiggins, Production and uses of diffractionless beams, J. Opt. Soc. Am. A 8(6), 932-942 (1991)
  3. N. Davidson, A. A. Friesem, and E. Hasman, Holographic axilens: high resolution and long focal depth, Opt. Lett. 16(7), 523-525 (1991)
  4. Jie Lin, Jianlong Liu, Jiasheng Ye, and Shutian Liu, Design of microlenses with long focal depth based on the general focal length function, J. Opt. Soc. Am. A 24(6), 1747-1751 (2007).
  5. Burvall, A. Axicon imaging by scalar diffraction theory, PhD thesis, Stockholm, 2004
  6. Christian Parigger, Y. Tang, D. H. Plemmons, and J. W. L. Lewis, Spherical aberration effects in lens–axicon doublets: theoretical study, Аppl. Opt. 36(31), 8214-8221 (1997)
  7. J. Sochacki, S. Bara, Z. Jaroszewicz, A. Kolodziejczyk, Phase retardation of the uniform-intensity axilens, Opt. Lett. 17(1), 7-9 (1992).
  8. G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K.Petelczyc, and M. Sypek, Imaging with extended focal depth by means of lenses with radial and angular modulation, Opt. Express. 15(15) 9184-9193 (2007)
  9. V. V. Kotlyar, V. A. Soifer, S. N. Khonina, Diffractive design of focusators generating a longitudinal line, Letters of JTP, 17 (24), 63-66 (1991) – [in Russian].
  10. Kotlyar V.V., Khonina S.N., Soifer V.A., Focusators into the longitudinal segment and multi-focal lenses, Computer Optics, 13, 12-15 (1993).
  11. J. Turunen, A. Vasara, and A. T. Friberg, Holographic generation of diffraction-free beams, J. Appl. Opt. 27(19), 3959-3962 (1988);
  12. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, The phase rotor filter, J. Mod. Opt. 39, 1147–1154 (1992).
  13. Narupon Chattrapiban, Elizabeth A. Rogers, David Cofield, Wendell T. Hill, III, Rajarshi Roy, Generation of nondiffracting Bessel beams by use of a spatial light modulator, Opt. Lett. 28(22), 2183- 2185 (2003)
  14. Khonina S.N., Kotlyar V.V., Skidanov R.V., Soifer V.A., Jefimovs K., Simonen J., Turunen J., Rotation of microparticles with Bessel beams generated by diffractive elements, Journal of Modern optics, 51(14), 2167–2184 (2004)
  15. Kotlyar V.V., Kovalev A.A., Khonina S.N., Skidanov R.V., Soifer V.A. and Turunen J., Diffraction of a conic wave and a Gaussian beam on a spiral phase plate, Computer Optics 28, 29-36 (2005).– [in Russian].
  16. Kotlyar V.V., Kovalev A.A., Skidanov R.V., Khonina S.N., and Turunen J., Generating hypergeometric laser beams with a diffractive optical element, Appl. Opt., 47(32), 6124- 6133 (2008)
  17. Khonina S. N., Balalayev S. A., Research of properties of the limited hypergeometrical laser beams, Computer Optics, 32(3), 226-233 (2008).– [in Russian].
  18. Balalayev S. A., Khonina S. N., Comparing properties of hypergeometrical modes and Bessel modes, Computer Optics 31(4) 23-28 (2007).– [in Russian].
  19. Khonina S. N., Balalayev S. A., Skidanov R. V., Kotlyar V. V., Paivanranta B., Turunen J., Encoded binary diffractive element to form hyper-geometric laser beams, J. Opt. A: Pure Appl. Opt. 11 (2009) 065702 (7pp)
  20. G. Indebetouw, Nondiffracting optical fields: some remarks on their analysis and synthesis, J. Opt. Soc. Am. A 6(1) 150-152 (1989)
  21. Durnin J., Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4(4) 651- 654 (1987)

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20