Focusing the linearly polarized light using a binary axicon with subwavelength period
V.V. Kotlyar, S.S. Stafeev, A.A. Kovalev, A.G. Nalimov

Full text of article: Russian language.

Abstract:
Using the finite-difference time domain method it is shown that a binary glass axicon with subwavelength period illuminated by a linearly polarized Gaussian beam forms near the surface an elliptical focal spot with diameters equal to 0.26λ and 0.61λ (the focal spot area equals 0.125λ2), and the depth of focus equals 0.4λ. The focal spot intensity is 45 times larger than the input beam intensity . This is the smallest focal spot with sidelobes smaller than 30% that can be obtained using a binary axicon.

Key words:
sharp focusing, subwavelength binary axicon, FDTD-method.

References:

  1. Karrai, K. Enchanced reflectivity contrast in cofocal solid immersionlens microscopy / K. Karrai, X. Lorenz, L. No­votny // Appl. Phys. Lett. – 2000. – Vol. 77(21). – P. 3459-3461.
  2. Ippolito, S.B. High spatial resolution subsurface microscopy / S.B. Ippolito, B.B. Goldberg, M.S. Unlu // Appl. Phys. Lett. – 2001. – Vol. 78(26). – P. 4071-4073.
  3. Liu, Y. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annual slits / Y. Liu, H. Xu, F. Stief, N. Zhitenev, M. Yu // Opt. Express. – 2011. – Vol. 19(21). – P. 20233-20243.
  4. Gordon, R. Proposal for superfocusing at visible wavelength using radiationless interference of a plasmonic array / R. Gordon // Phys. Rev. Lett. – 2009. – Vol. 102. – P. 207402.
  5. Chen, K.R. Beyond-limit light focusing in the intermediate zone / K.R. Chen, W.H. Chu, H.C. Fang, C.P. Liu, C.H. Huang, H.C. Chui, C.H. Chuang, Y.L. Lo, C.Y. Lin, H.H. Hwung, A.Y.-G. Fuh // Opt. Lett. – 2011. – Vol. 36(23). – P. 4497-4499.
  6. Kotlyar, V.V. Tight focusing with a binary microaxicon / V.V. Kotlyar, S.S. Stafeev, L. O’Faolain, V.A. Soifer // Opt. Lett. – 2011. – Vol. 36(16). – P. 3100-3102.
  7. Khonina, S.N. Calculation of diffraction of the linearly-polarized limited beam with uniform intensity on high-aperture binary micro-axicon in a near zone /S.N. Khonina, A.V. Ustinov, S.G. Volotovsky, A.A. Kovalev // Com­puter optics. – 2010. – Vol. 34(4). – P. 443-460. – (In Russian).
  8. Khonina, S.N. Experimental research of diffraction of a linearly-polarized Gaussian beam by binary microaxicon with the period close to wavelength / S.N. Khonina, D.V. Nesterenko, A.A. Morozov, R.V. Skidanov, I.A. Pu­stovoy // Computer optics. – 2011. – Vol. 35(1). – P. 11-21. – (In Russian).
  9. Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / N. Davidson, N. Bokor // Opt. Lett. – 2004.– Vol. 29(12). – P. 1318-1320.
  10. Stadler, J. Tighter focusing with a parabolic mirror / J. Stadler, C. Stanciu, C. Stupperich, A.J. Meixner // Opt. Lett. – 2008.– Vol. 33(7). – P. 681-683.
  11. Kotlyar, V.V. Sharp focusing of radially polarized light using microlenses / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev // Computer optics. – 2008. – Vol. 32(2). – P. 155-167. – (In Russian).
  12. Bezus, E.A. Interference pattern generation in evanescent electromagnetic waves for nanoscale lithography using waveguide diffraction gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskii // Quantum Electron. – 2011. – Vol. 41(8). – P. 759-764. – (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20