Intensity and power flow symmetry of subwavelength focal spot
V.V. kotlyar, A.A. Kovalev, S.S. Stafeev

Full text of article: Russian language.

Abstract:
Using a plane-wave expansion method it is shown that the elliptical shape of the focal spot is determined by the longitudinal component of the electric field. However, the cross-section of the power flow has the shape of a circle because it is independent of the longitudinal component of the electric field. Using a near-field scanning optical microscope with metallic cantilever it is experimentally shown that a binary Fresnel zone plate with the focal length equal to the wavelength of the incident linearly polarized Gaussian beam forms an elliptical focal spot with diameters FWHMx = ( 0. 44 ±  0.0 2)l and FWHMy = ( 0.5 2 ±  0. 02)l and the depth of focus DOF = ( 0.7 5 ±  0.0 2)l. The comparison between the experiment and simulation confirms that the near-field scanning optical microscope measures the transverse intensity rather than the power flow and the total intensity. This is in agreement with the Bethe- Bowcamp law that states that a small-hole metallic cantilever measures only the transverse intensity.

Key words:
subwavelength focusing, elliptical focal spot, Bethe-Bouwkamp law.

References:

  1. Jia, B. Near-field visualization of focal depth modulation by step corrugated plasmonic slits / B. Jia, H. Shi, J. Li, Y. Fu, C. Du, M. Gu // Appl. Phys. Lett. – 2009. – Vol. 94. – P. 151912.
  2. Chen, K.R. Beyond-limit light focusing in the intermediate zone / K.R. Chen, W.H. Chu, H.C. Fang, C.P. Liu, C.H. Huang, H.C. Chui, C.H. Chuang, Y.L. Lo, C.Y. Lin, H.H. Hwung, A.Y.-G. Fuh // Opt. Lett. – 2011. – Vol. 36, N 23. – P. 4497-4499.
  3. Yu, Y. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design / Y. Yu, H. Zappe // Opt. Express. – 2011. – Vol. 19, N 10. – P. 9434-9444.
  4. Liu, Y. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits / Y. Liu, H. Xu, F. Stief, N. Zhitenev, M. Yu // Opt. Express. – 2011. – Vol. 19, N  21. – P. 20233-20243.
  5. Kotlyar, V.V. Tight focusing with a binary microaxicon / V.V. Kotlyar, S.S. Stafeev, L. O’Faolain, V.A. Soifer // Opt. Lett. – 2011. – Vol. 36, N 16. – P. 3100-3102.
  6. Mote, R.G. Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linear polarized illumination / R.G. Mote, S.F. Yu, A. Ku­mar, W. Zhou, X.F. Li // Appl. Phys. B. – 2011. – Vol. 102, N 1. – P. 95-100.
  7. Stafeev, S.S. Subwavelength focusing using Fresnel zone plate with focal length 532 nm / S.S. Stafeev, L. O’Fao­lain, M.I. Shanina, V.V. Kotlyar, V.A. Soifer // Computer optics. – 2011. – Vol. 35(4). – P. 460-461. – (In Russian).
  8. Ye, J.-S. Long-focal-depth cylindrical microlens with flat axi­al intensity distributions / J.-S. Ye, G.-A. Mei, X.-H. Zheng, Y. Zhang // J. Mod. Opt. – 2012. – Vol. 59, N 1. – P. 90-94.
  9. Huang, K. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system / K. Huang, Y. Li // Opt. Lett. – 2011. – Vol. 36, N 18. – P. 3536-3538.
  10. Yuan, G.H. Nondiffracting transversally polarized beam / G.H. Yuan, S.B. Wei, X.-C. Yuan // Opt. Lett. – 2011. –Vol. 36, N 17. – P. 3479-3481.
  11. Li, X. Superresolution-focal-volume induced 3.0 Tby­tes/disk capacity by focusing a radially polarized beam / X. Li, Y. Cao, M. Gu // Opt. Lett. – 2011. – Vol. 36, N 13. – P. 2510-2512.
  12. Lin, J. Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation / J. Lin, K. Yin, Y. Li, J. Tan // Opt. Lett. – 2011. – Vol. 36, N 7. – P. 1185-1187.
  13. Lin, H. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam / H. Lin, B. Jia, M. Gu // Opt. Lett. – 2011. – Vol. 36, N 13. – P. 2471-2473.
  14. Kotlyar, V.V. Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon / V.V. Kotlyar, S.S. Stafeev // J. Opt. Soc. Am. B. – 2010. – Vol. 27, N 10. – P. 1991-1997.
  15. Martin, J. Plain Intense Bessel-like beams arising from pyramid-shaped microtips / J. Martin, J. Proust, D. Gérard, J.-L. Bijeon, J. Plain // Opt. Lett. – 2012. – Vol. 37, N 7. – P. 1274-1276.
  16. De Angelis, F. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures / F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Peroz­ziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio // Nature Photonics. – 2011. – Vol. 5. – P. 682-687.
  17. Rogers, E.T.F. A super-oscillatory lens optical microscope for subwavelength imaging / E.T.F. Rogers, J. Lind­berg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev // Nature Materials Lett. – 2012. – doi:10.1038/nmat3280.
  18. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE.
  19. Novotny, L. Principles of nano-optics / L. Novotny, B. Hecht. – Cambridge University Press, 2006. – 539 p.
  20. Michalski, K.A. Complex image method analysis of a plane wave-exited subwavelength circular aperture in a planar screen / K.A. Michalski // Prog. Electromag. Res. B. – 2011. – Vol. 27. – P. 253-272.
  21. Wu, J.H. Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film / J.H. Wu // Opt. Lett. – 2011. – Vol. 36, N 17. – P. 3440-3442.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20