Reducing the focal spot size under radially polarized illumination by means of a binary annular element
S.N. Khonina, A.V. Ustinov

Full text of article: Russian language.

Abstract:
The influence of the width of a ring diaphragm with a radial phase jump on the focal spot size and intensity under the radially polarized illumination is analytically and numerically investigated . It is show n t hat due to the destructive interference of the different-phase rings , it is possible to overcome the scalar limit corresponding to the first zero of the zero-order Bessel function . Thus , the minimal focal spot size (FWHM = 0,33l) is reached at the ring diaphragm width equal to 20% of the full aperture radius . In this cas e, the i ntensity of the side lobes does not exceed 30% of that of the central peak. It is also sh ow n t hat due to introducing the phase jump and simultaneous ly widening the ring aperture it is possible to generate a focal spot whose size does not exceed a limit corresponding to the narrow ring aperture, while the intensity increases almost 6 times. In this case , the side lobes are increasing to 35% of the central peak.

Key words:
sharp focusing, radial polarization, narrow ring aperture, radial phase jump, focal spot reduction , side lobe intensity .

References:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  3. Sheppard, C.J.R. Annular pupils, radial polarization, and superresolution / C.J.R. Sheppard // Appl. Opt. - 2004. - V. 43(22). - P. 4322-4327.
  4. Helseth, L.E. Mesoscopic orbitals in strongly focused light / L.E. Helseth // Opt. Commun. - 2003. - V. 224. - P. 255-261.
  5. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  6. Sun, C.-C. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation / C.-C. Sun and C.-K. Liu // Opt. Lett. - 2003. - V. 28. - P. 99-101.
  7. Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics / H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard and C.T. Chong // Nat. Photonics. - 2008. - V. 2. - P. 501-505.
  8. Khonina, S.N. Control of contribution of components of vector electric field in focus of a high-aperture lens by means of binary phase structures / S.N. Khonina, S.G. Volotovsky // Computer Optics. - 2010. - V. 34, N 1. - P. 58-68. - (In Russian).
  9. Khonina, S.N. Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system / S.N. Khonina, A.V. Ustinov, E.A. Pelevina // Computer Optics. - 2011. - V. 35, N 2. - P. 203-219. - (In Russian).
  10. Toraldo di Francia, G. Degrees of freedom of an image / G. Toraldo di Francia // J. Opt. Soc. Am. -1969. - V. 59. - P. 799-804.
  11. Huang, F.M. Super-resolution without evanescent waves / F.M. Huang and N.I. Zheludev // Nano Lett. - 2009. - Vol. 9. - P. 1249-1254.
  12. Sales, T.R.M. Diffractive superresolution elements / T.R.M. Sales and G.M. Morris // J. Opt. Soc. Am. A. - 1997. - Vol. 14. - P. 1637.
  13. Khonina, S.N. Minimization of light OR DARK focal spot size With controllable growth of SIDE LOBES In FOCUSING SYSTEMS with the high numerical aperture / S.N. Khonina, S.G. Volotovsky // Computer optics. - 2011. - V. 35(4). - P. 438-451.
  14. Bewersdorf, J. 4pi-confocal microscopy is coming of age / Joerg Bewersdorf, Alexander Egner, Stefan W. Hell // G.I.T. Imaging & Microscopy. - 2004. - Vol. 4. - P. 24-25.
  15. Helseth, L.E. Breaking the diffraction limit in nonlinear materials / L.E. Helseth // Opt. Commun. - 2005. - Vol. 256. - P. 435.
  16. Bokor, N. Tight parabolic dark spot with high numerical aperture focusing with a circular p phase plate / N. Bokor, N. Davidson // Opt. Commun. - 2007. - V. 270. - P. 145-150.
  17. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan // Opt. Commun. - 2006. - V. 265. - P. 411-417.
  18. Gaoa, X. Focusing properties of concentric piecewise cylindrical vector beam / X. Gaoa, J. Wanga, H. Gua, W. Xub // Optik. - 2007. - V. 118. - P. 257-265.
  19. Huang, K. Design of DOE for generating a needle of a strong longitudinally polarized ?eld / K. Huang, P. Shi, X.-L. Kang, X. Zhang and Y.-P. Li // Opt. Lett. - 2010. - V. 35. - P. 965-967.
  20. Tian, B. Tight focusing of a double-ring-shaped azimuthally polarized beam / B. Tian, J. Pu // Opt. Lett. - 2011. - V. 36, N 11. - P. 2014-2016.
  21. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. R. Soc. London Ser. A. - 1959. - V. 253. - P. 358-379.
  22. Abramowitz, M. Handbook of Mathematical  Functions  / M. Abramowitz and I.A. Stegun - Courier Dover Publica-tions, 1972. - 1046 p.
  23. Khonina, S.N. Propagation of the radially-limited voptical beam in a near zone. Part I. Calculation algorithms / S.N. Khonina, A.V. Ustinov, A.A. Kovalev, S.G. Volotovsky // Computer Optics. - 2010. - V. 34(3). - P. 317-332.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20