Two-component nanocavity based on a regular photonic crystal nanobeam
P.G. Serafimovich

PDF, 376 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2013-37-2-155-159

Pages: 155-159.

Abstract:
I propose and numerically examine a two-component design of an optical nanocavity. Such a nanocavity consists, first, of a photonic crystal nanobeam, in which the period of the structure is not changed. Second, the cavity contains a piece of additional (supplementary) material with the area of several periods of the photonic crystal. When combining the two components the defect has formed, in which the resonant mode can be excited. The advantages of the proposed model of the cavity has been considered. In particular, the easiness of formation of cavities arrays and of development of dynamic nanophotonic elements. The proposed nanocavity fabrication tolerances have been calculated. It is shown that existing structural layers alignment technologies can be used for fabrication.

Key words:
optical nanoresonator; photonic crystal waveguide; resonance mode; Q-factor.

References:

  1. Vahala, K.J. Optical microcavities / K.J. Vahala // Nature. – 2003. – Vol. 424(6950). – P. 839-846.
    Akahane, Y. Fine-tuned high-Q photonic-crystal nanocavity / Y. Akahane, T. Asano, B.-S. Song and S. Noda // Optics Express. – 2005. – Vol. 13(4). – P. 1202-1214.
  2. Velha, P. Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide / P. Velha, J.C. Rodier, P. Lalanne, J.P. Hugonin, D. Peyrade, E. Picard, T. Charvolin and E. Ha­dji // New J. Phys. (IOP). – 2006. – V. 8(204). – P. 1-13.
  3. Yariv, A. Coupled-resonator optical waveguide: a proposal and analysis / A. Yariv, Y. Xu, R.K. Lee and A. Scherer // Opt. Lett. – 1999. – V. 24(11). – P. 711-713.
  4. Faraon, A. Local tuning of photonic crystal cavities using chalcogenide glasses / A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff and J. Vu­ckovic // Appl. Phys. Lett. – 2008. – V. 92. – P. 043123.
  5. Frank, I.W. Programmable photonic crystal nanobeam cavities / I.W. Frank, P.B. Deotare, M.W. McCutcheon and M. Loncar // Optics Express. – 2010. – V. 18(8). – P. 8705-8712.
  6. Qin, F. Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique / F. Qin, Z.-M. Meng, X.-L. Zhong, Y. Liu and Z.-Y. Li // Optics Ex­press. – 2012. – V. 20(12). – P. 13091-13099.
  7. Tran, N.-V.-Q. Directive emission from high-Q photonic crystal cavities through band folding / N.-V.-Q. Tran, S. Combrié and A. De Rossi // Phys. Rev. – 2009. – Vol. B79. – P. 041101.
  8. Portalupi, S.L. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor / S.L. Portalupi, M. Galli, C. Reardon, T.F. Krauss, L. O’Faolain, L.C. Andreani and D. Gerace // Opt. Express. – 2010. –V. 18. –P. 16064-16073.
  9. Asano, Y. High-Q photonic nanocavity in a two-dimensional photonic crystal / Y. Akahane, T. Asano, B.S. Song and S. Noda // Nature. – 2003. – V. 425. – P. 944-947.
  10. Song, B.-S. Ultra-high-Q photonic double-heterostructure nanocavity / B.-S. Song, S. Noda, T. Asano and Y. Akahane // Nature Materials. – 2005. – V. 4. – P. 207-210.
  11. Quan, Q. Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities / Q. Quan and M. Loncar // Opt. Express. – 2011. – Vol. 19, N 5. – P. 18529-18542.
  12. Taflove, A. Computational Electrodynamics: The Finite-Dif­ference Time-Domain Method, 3rd ed. / A. Taflove and S.C. Hagness. – Norwood, MA: Artech House, 2005.
  13. Ahn, B.H. One-dimensional parabolic beam photonic crystal laser / B.H. Ahn, J.H. Kang, M.K. Kim, J.H. Song, B. Min, K.S. Kim and Y.H. Lee // Opt. Express. – 2010. – V. 18. – P. 5654-5660.
  14. Li, N. Sub-20-nm alignment in nanoimprint lithography using Moire fringe / N. Li, W. Wu, S.Y. Chou // Nano Letters. – 2006. – V. 6(11). – P. 2626-2629.
  15. Wu, W. Nanoimprint lithography with ≤60 nm overlay precision / W. Wu, R.G. Walmsley, W.-D. Li, X. Li, R.S. Williams // Applied Physics A. – 2012. – V. 106(4). – P. 767-772.
  16. Brueck, S.R.J. Optical and Interferometric Lithography — Nanotechnology Enablers / S.R.J. Brueck // Proc. IEEE. – 2005. – V. 93(10). – P. 1704-1721.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20