Diffraction of laser beam on a two-zone cylindrical microelement
S.N. Khonina
, D.A. Savelyev, A.V. Ustinov

PDF, 1893 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2013-37-2-160-169

Pages: 160-169.

Abstract:
Analytically and numerically shown, that an optical microelement consisting just two cylindrical zones is useful for sharp focusing of laser radiation if the radius of the central zone is halfwavelength. The numerical calculations executed in approach of a thin element by means of the plane wave expansion method show good accordance with analytical estimations. Also the qualitative accordance is shown on the basis of finite-difference time-domain method in view of three-dimensional structure of an element. Characteristics and features of diffraction of Gaussian beam with linear and circular polarization on a considered element are investigated.

Key words:
diffraction by a circular and a ring aperture, two-zone cylindrical element, sharp focusing, plane wave expansion, finite-difference time-domain method.

References:

  1. Wei, P.-K. Subwavelength focusing in the near field in mesoscale air-dielectric structures / P.-K. Wei, H.-L. Chou and Y.-C. Chen // Opt. Lett. - 2004. - Vol. 29, N 5. - P. 433-435.
  2. Kotlyar, V.V. Tight focusing with a binary microaxicon / V.V. Kotlyar, S.S. Stafeev, L. O’Faolain and V.A. Soifer // Opt. Lett. - 2011. - Vol. 36, N 16. - P. 3100-3102.
  3. Khonina, S.N. Experimental research of diffraction of an li­nearly-polarized Gaussian beam by binary microaxicon with the period close to wavelength / S.N. Khonina, D.V. Ne­sterenko, A.A. Morozov, R.V. Skidanov, I.A. Pustovoy // Computer Optics. - 2011. - V. 35, N 1. - P. 11-21. - (In Russian).
  4. Kotlyar, V.V. Intensity and power flow symmetry of subwavelength focal spot / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev // Computer Optics. - 2012. - V. 36, N 2. - P. 190-198. - (In Russian).
  5. Kotlyar, V.V. Levelling the spot intensity of the focused Gaussian beam / V.V. Kotlyar, S.N. Khonina // Computer Optics. - 1998. - V. 18. - P. 42-52. - (In Russian).
  6. Khonina, S.N. Reducing of the focal spot size at radial polarization by means of the binary annular element / S.N. Khonina, A.V. Ustinov // Computer Optics. - 2012. - V. 36, N 2. - P. 219-226. - (In Russian).
  7. Born, M. Principles of Optics / M. Born, E. Wolf - 6th ed. - Pergamon, Oxford, 1980. - Chap. 8.3.
  8. Andrews, C.L. Diffraction pattern in a circular aperture measured in the microwave region / C.L. Andrews // J. Appl. Phys. - 1950. - Vol. 21. - P. 761-767.
  9. Khonina, S.N. Propagation of the radially-limited vortical beam in a near zone. Part I. Calculation algorithms / S.N. Khonina, A.V. Ustinov, A.A. Kovalev, S.G. Volotov­sky // Computer Optics. - 2010. - V. 34, N 3. - P. 317-332. - (In Russian).
  10. Totzeck, M. Validity of the scalar Kirchhoff and Ray­leigh-Sommerfeld diffraction theories in the near field of small phase objects / M. Totzeck // J. Opt. Soc. Am. A. - 1991. - V. 8, N 1. - P. 27-32.
  11. Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications. - 2005. - V. 256. - P. 1-9.
  12. Luneburg, R.K. Mathematical Theory of Optics / R.K. Lu­neburg. - University of California Press, Berkeley, California, 1966.
  13. Khonina, S.N. Calculation of diffraction of the linearly-polarized limited beam with uniform intensity on high-aperture binary micro-axicons in a near zone / S.N. Khonina, A.V. Ustinov, S.G. Volotovsky, A.A. Ko­valev // Computer Optics. - 2010. - V. 34, N 4. - P. 443-460. - (In Russian).
  14. Oskooi, A.F. Meep: A flexible free-software package for elec­tromagnetic simulations by the FDTD method / A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson // Computer Physics Communications. - 2010. - Vol. 181. - P. 687-702.
  15. Osterberg, H. Closed solutions of Rayleigh’s integral for axial points / H. Osterberg, L.W. Smith // J. Opt. Soc. - 1961. - Vol. 51(10). - P. 1050-1054.
  16. Dubra, A. Diffracted field by an arbitrary aperture / A. Dubra, J.A. Ferrari // Am. J. Phys. - 1999. - Vol. 67(1). - P. 87-92.
  17. Romero, J.A. Vectorial approach to Huygens’s principle for plane waves: circular aperture and zone plates / J.A. Romero, L. Hernández // J. Opt. Soc. Am. A. - 2006. - Vol. 23, N 5. - P. 1141-1145.
  18. Khonina, S.N. Binary lens: investigation of local focuses / S.N. Khonina, A.V. Ustinov, R.V. Skidanov // Computer Optics. - 2011. - V. 35, N 3. - P. 339-346. - (In Russian).
  19. Savelyev, D.A. Comparison of simulation diffraction linearly polarized Gaussian beam by a binary axicon with a high numeric aperture integral and difference method / D.A. Savelyev // News of Samara Scientific Center of RAS. - 2012. - V. 14, N 4. - P. 38-46. - (In Russian).
  20. Savelyev, D.A. Maximising the longitudinal electric component at diffraction on a binary axicon linearly polarized radiation / D.A. Savelyev, S.N. Khonina // Computer Optics. - 2012. - V. 36, N 4. - P. 511-517. - (In Russian).
  21. Kotlyar, V.V. Focusing of linearly polarized light using binary axicon with subwavelength period / V.V. Kotlyar, S.S. Stafeev, A.A. Kovalev, A.G. Nalimov // Computer Optics. - 2012. - V. 36, N 2. - P. 183-189. - (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20