Research of influence of parameters of ultrashort pulse on intensity of precursors
E.S. Kozlova , V.V. Kotlyar

PDF, 629 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2013-37-4-436-442

Pages: 436-442.

Abstract:
Simulation of short optical pulses in the planar waveguide of silica glass showed that in the case of initial rectangular pulse with a carrier wavelength λ0=532 nm (away from resonance) and pulse duration equal 0,5λ0(n+0,5), n - an integer, precursors intensity increases by about 2 at a distance of tens of microns away from the origin. Although intensity of precursors is about 1% compared with the intensity of the main pulse. But if you choose the length of the pulse wave at the nearest resonance (λ0=120 nm), the intensity of the precursors may exceed the intensity of the main pulse of 4 times.

Key words:
frequency dispersion, Sellmeyer’s model, ultrashort rectangular pulse, optical precursor.

References:

  1. Hecht, J. Spectral Broadening Advances Quest for Single-Cycle Pulses / J. Hecht // Laser Focus World. – 2011. – Vol. 47(8). – P. 65-70.
  2. Fourmaux, S. Laser Pulse Contrast Ratio Cleaning in 100 TW Scale Ti: Sapphire Laser Systems / S. Fourmaux, S. Payeur, Ph. Lassonde, J.C. Kieffer and F. Martin // Laser Systems for Applications. – 2011. – P. 139 – 154.
  3. Block, М. Few-cycle high-contrast vortex pulses / M. Block, J. Jahns, R. Grunwald // Optics Letters. – 2012. – Vol. 37(18). – P. 3804-3806.
  4. Povolotskiy, A. 2D and 3D laser writing for integrated optical elements creation / A. Povolotskiy, A. Shimko, A. Manshina // Mondello Proceedings of WFOPC2005: Elioticinese Service Point srl. – 2005. – Vol 4. – P. 196–202.
  5. Cheng, Ya. Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications / Ya. Cheng, K. Sugioka, K. Midorikawa // Applied Surface Science. – 2005. – Vol. 248. – P. 172–176.
  6. Liu, X. Laser ablation and micromachining with ultrashort laser pulses / X. Liu, D. Du, G. Mourou // IEEE Quantum Electron. – 1997. – Vol 38. – P. 1706.
  7. Krukov, P.G. Lasers of ultrafast pulses and it’s aaplication / P.G. Krukov. – Dolgoprudniy, 2012. – 248 p. – (in Russian).
  8. Bohkarev, N.N. The interaction of femtosecond laser pulses with biological substance / N.N. Bockarev – Tomsk, 2007. – 122 p. – (in Russian).
  9. Liu, Z. Ultraviolet conical emission produced by high-power femtosecond laser pulse in transparent media / Z. Liu, X. Lu, Q. Liu, S. Sun, L. Li, X. Liu, B. Ding, B. Hu // Appl. Phys. B. – 2012. – Vol. 108 – P. 493-500.
  10. Krebs, M. Towards isolated attosecond pulses at megahertz repetition rates / M. Krebs, S. Hadrich, S. Demmler, J. Roth­hardt, A. Zair, L. Chipperfield, J. Limpert, A. Tunnermann // Nature Photonics. – 2013. – Vol. 7. – P. 555-559.
  11. Zhao, K. Tailoring a 67 attosecond pulse through advantageous phase-mismatch / K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, Z. Chang // Optics Letters. – 2012. – Vol. 37(18). – P. 3891-3893.
  12. Sansone, G. Isolated Single-Cycle Attosecond Pulses / G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli // Science. – 2006. – Vol. 314. – P. 443-445.
  13. Pfeifer, T. Single attosecond pulse generation in the multi-cycle driver regime by adding a weak second-har­mo­nic field / T. Pfeifer, L. Gallmann, M.J. Abel, D.M. Neu­mark, S.R. Leone // Optics Letters. – 2005. – Vol. 31(7). – P. 975-977.
  14. Piglosiewicz, B. Ultrasmall bullets of light - focusing few-cycle light pulses to the diffraction limit / B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, C. Lienau // Optics Express, – 2011. – Vol. 19(15) – P. 14451-14463.
  15. Ahmanov, S.А. Optics of Femtosecond Laser Pulses / S.A. Ahmanov, V.A. Vislouh, A.S. Chirkin. – M.: “Nauka” Publisher, 1988. – 312 p. – (in Russian).
  16. Oughstun, K.E. Electromagnetic pulse propagation in causial dielectrics / K.E. Oughstun, G.C. Sherman. – Springer-Verlag, 1994.
  17. Li, C. Approach to accurately measuring the speed of optical precursors / C. Li, Z. Zhou, H. Jeong, G. Guo // Phys. Rev. A. – 2011. – V. 84 – P. 043803.
  18. Safian, R. Joint time-frequency and FDTD analysis of precursor fields in dispersive media / R. Safian, C.D. Sar­ris, M. Mojahedi // Phys. Rev. E. – 2006. – V. 73. – P. 066602.
  19. Jeong, H. Evolution of Sommerfeld and Brillouin precursors in intermediate spectral regimes / H. Jeong, U.L. Osterberg, T. Han­sson //J. Opt. Soc. Am. B. – 2009. – V. 26. – P. 2455-2460.
  20. Macke, B. From Sommerfeld and Brillouin forerunners to optical precursors / B. Macke, B. Segard // Phys. Rev. A. – 2013. – V. 87 – P. 043830.
  21. Macke, B. Simple asymptotic forms for Sommerfelod and Brillouin precursors / B. Macke, B. Segard //Phys. Rev. A. – 2012. – V. 86 – P. 013837.
  22. Kozlova, E.S. Simmulations of Sommerfeld and Brillouin precursors in the medium with frequency dispersion using numerical method of solving wave equations/ E.S. Kozlova, V.V. Kotlyar // Computer Optics. – 2013. – V. 37(2) – P. 146-154. – (in Russian).
  23. Couairon, A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses / A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz // Phys. Rev. B. – 2005. – Vol. 71. – P. 125435-125441.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20