Classification of  ternary quasicanonical number systems in imaginary quadratic fields and their application
  P. S. Bogdanov, V. M. Chernov
 
 PDF, 286 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2014-38-1-139-147
Pages: 139-147.
Abstract:
In  this paper all possible ternary quasicanonical number system in imaginary  quadratic fields are considered. For representation of algebraic integers of  imaginary quadratic fields in the specified number systems an algorithm based  on the division with remainder is used. In addition, the algorithms of the  basic arithmetic operations in ternary number systems in the ring of Eisenstain  integers are synthesized. Method of fast error-free cyclic convolution  computation is considered.
Key words:
canonical numerical  system, norm division with remainder, quasicanonical numerical system, imaginary quadratic fields.
References:
  - Davydov, E.S. Minimal number groups for  the formation  of natural series / E.S. Davydov – Petersburg: Typo-lithography  of V.V. Komarov,  1903. – 39 p. – (In  Russian).
 
  - Sludsky, F.A. On  the properties of degrees  of two and three / F. Sludskii // Mathematical Collection. – 1870. – Vol. 4, Issue. 3. –  P. 171-175. –  (In Russian).
     
  - Kushnerov, A. Ternary digital equipment. Retrospective and modern age / A. Kushnerov – Israel Ben-Gurion University, Beersheba, 2005. – 15 p. –  (In Russian).
     
  - Knuth, D.E. The Art  of Computer Programming. Vol. 2 Semi-numerical Algorithms / D.E. Knuth – Moscow: “Mir” Publisher, 1977. – 727 p. – (In Russian).
     
  - Katai, I. Kanonische  Zahlensysteme in der Theorie der Quadratischen Zahlen / I. Katai, B. Kovacs // Acta Sci. Math. (Szeged).  – 1980. – Vol. 42 –P. 99-107.
     
  - Katai, I. Canonical number systems in imaginary quadratic fields / I. Katai, B. Kovacs // Acta Math. Hungar. – 1981. – Vol. 37 – P. 159-164.
     
  - Kovacs, B. Canonical  number systems in algebraic number fields / B. Kovacs // Acta Math. Hungar. – 1981. –  Vol. 37 – P. 405-407.
     
  - Kovacs, A. Generalized binary number  system / A. Kovacs // Annales Univ.  Sci. Budapest, Sect. Comp. – 2001. – Vol. 20 – P. 195-206.
     
  - Borevich, Z.I. Number theory / Z.I. Borevich, I.R. Shafarevich – Academic Press, 1986. – 434 p. 
     
  - Chernov, V.M. Arithmetical methods of  synthesis  of fast algorithms of Discrete  orthogonal Transforms / V.M. Chernov – Moscow.: "Fizmatlit" Publisher,  2007. – 264 p. – (In Russian). 
     
  - Solomyak, B. Dynamics  of self-similar tilings / B. Solomyak // Ergodic Theory Dynam. Systems.  – 1997. – Vol. 17, N 3. – P. 695-738.
     
  - Schoenhage, A. Schnelle Multiplikation  grosser Zahlen / A. Schoenhage, V.  Strassen // Computing. – 1971.  – Vol. 7. – P. 281-292.
     
  - Fuerer, M. Faster integer multiplication / M. Fuerer // STOC  Proceedings. – 2007. – P. 57-66. 
     
  - Chernov, V. Synthesis of parallel algorithms of Fourier-Galois transforms in direct sums of finite rings / V.  Chernov // Proceedings of the Samara Scientific Center of Russian Academy of Sciences. – 2000. – Issue 1. – P. 128-134. – (In Russian). 
 
  - Chernov, V. «Error-free» calculation of the  convolution using generalized Mersenne and Fermat transforms over algebraic  fields / V. Chernov, M. Pershina //  Computer Analysis of Image and Pattern (CAIP’97). Lectures Notes in Computer.
  
 
  
  © 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20