Fracxicon as hybrid element between the parabolic lens and the linear axicon
A.V. Ustinov, S.N. Khonina

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 3124 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-3-402-411

Pages: 402-411.

Abstract:
In previous studies we shown on the basis of the geometrical-optical analysis that the fracxicon (generalized optical element of the parabolic lens and the linear axicon) formally produces an infinitely large value of the intensity on the optical axis. Within frame of the paraxial wave model this caustic effect was not found. In this paper, we consider plane wave diffraction on the fracxicon in nonparaxial wave model and we show that at high numerical aperture the fracxicon with an exponent close to 3/2, is actually analogue of the hyperbolic lens optimally focusing incident beam.

Key words:
fracxicon, parabolic lens, axicon, hyperbolic lens, high numerical aperture.

References:

  1. McLeod, J.H. The axicon: a new type of optical element / J.H. McLeod // Journal of the Optical Society of America. – 1954. – V. 44. – P. 592-597.
  2. Fujiwara, J. Optical properties of conic surfaces. I. Re?ecting cone / J. Fujiwara // Journal of the Optical Society of America. – 1962. – Vol. 52. – P. 287-292.
  3. Sochacki, J. Annular-aperture logarithmic axicon / J. Sochacki, Z. Jaroszewicz, L.R. Staronski and A. Kolodziejczyk // Journal of the Optical Society of America A. – 1993. – Vol. 10. – P. 1765-1768.
  4. Jaroszewicz, Z. Apodized annular-aperture logarithmic axicon: smoothness and uniformity of the intensity distribution / Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk and L.R. Staronski // Optics Letters. – 1993. – Vol. 18. – P. 1893-1895.
  5. Golub, I. Characterization of a refractive logarithmic axicon / I. Golub, B. Chebbi, D. Shaw, and D. Nowacki // Optics Letters. – 2010. – Vol. 35. – P. 2828-2830.
  6. Sochacki, J. Nonparaxial design of generalized axicons / J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz and S. Bará // Applied Optics. – 1992. – Vol. 31. – P. 5326-5330.
  7. Davidson, N. Holographic axilens: high resolution and long focal depth / N. Davidson, A.A. Friesem and E. Hasman // Optics Letters. – 1991. – Vol. 16, Issue 7. – P. 523-525.
  8. Koronkevich, V.P. Lensacon / V.P. Koronkevich, I.A. Mikhaltsova, E.G. Churin and Yu.I. Yurlov // Applied Optics. – 1993. – Vol. 34, Issue 25. – P. 5761-5772.
  9. Parigger, C. Spherical aberration effects in lens axicon doublets: theoretical study / C. Parigger, Y. Tang, D.H. Plemmons [et al.] // Applied Optics. – 1997. – Vol. 36(31). – P. 8214-8221.
  10. Khonina, S.N. The lensacon: nonparaxial effects / S. N. Khonina, N. L. Kazanskii, A. V. Ustinov, S. G. Volotovskiy // Journal of Optical Technology. – 2011. – Vol. 78 (11). – P. 724-729.
  11. Bin, Z. Diffraction property of an axicon in oblique illumination / Z. Bin and L. Zhu // Applied Optics. – 1998. – Vol. 37. – P. 2563–2568.
  12. Burvall, A. Axicon imaging by scalar diffraction theory / A. Burvall.– PhD thesis, Stockholm, 2004.
  13. Khonina, S.N. Axicons application in imaging systems for increasing depth of focus / S.N. Khonina, D.A. Savelyev // Bulletin of Samara Scientific Center of RAS. – 2011. – Vol. 13(6). – P. 7-15. – (In Russian).
  14. Van Heel, A.C.S. Modern alignment devices // Advanced Optical Techniques; Ed. By A.C.S. Van Heel. – North-Holland, 1967. – P. 319.
  15. Wang, K. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement / K. Wang, L. Zeng, and Ch. Yin // Optics Communications. – 2003. – Vol. 216. – P. 99-103.
  16. Fortin, M. Optical tests with Bessel beam interferometry / M. Fortin, M. Piché and E.F. Borra // Optics Express. – 2004. – Vol. 2(24). – P. 5887-5895.
  17. Reichelt, S. Self-calibration of wavefront testing interferometers by use of diffractive elements / S. Rei­chelt, H. Tiziani and H. Zappe // Proceeding of SPIE. – 2006. – Vol. 6292. – P. 629205-10.
  18. Arimoto, R. Imaging properties of axicon in a scanning optical system / R. Arimoto, C. Saloma, T. Tanaka and S. Kawata // Applied Optics. – 1992. – Vol. 31(31). – P. 6653-6657.
  19. Lu, J. Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization / J. Lu and J.F. Greenleaf // Proceeding of SPIE. – 1992. – Vol. 1733. – P. 92-119.
  20. Ding, Z. High-resolution optical coherence tomography over a large depth range with an axicon lens / Z. Ding, H. Ren, Y. Zhao, J.S. Nelson and Z. Chen // Optics Letters. – 2002. – Vol. 27. – P. 243-245.
  21. Leitgeb, R.A. Extended focus depth for Fourier domain optical coherence microscopy / R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann and T. Las­ser // Optics Letters. – 2006. – Vol. 31, Issue 16. – P. 2450-2452.
  22. Lee, K.-S. Bessel beam spectral-domain high-resolu­tion optical coherence tomography with micro-optic axicon providing extended focusing range / K.-S. Lee and J.P. Rolland // Optics Letters. – 2008. – Vol. 33(15). – P. 1696-1698.
  23. Arlt, J. Optical micromanipulation using a Bessel light beams / J. Arlt [et al.] // Optics Communications. – 2001. – V. 197. – P. 239-245.
  24. Garces-Chavez, V. Simultaneous micromanipulation in multiple planes using a self reconstructing light beam / V. Garces-Chavez [et al.] // Nature. – 2002. – V. 419. – P. 145-147.
  25. Khonina, S.N. DOE for optical micromanipulation / S.N. Khonina, R.V. Skidanov, A.A. Almazov, V.V. Kot­lyar, V.A. Soifer, A.V. Volkov // Proceedings of SPIE: Lasers and Measurements. – 2004. – V. 5447. – P. 304-311.
  26. Shao, B. Size tunable three-dimensional annular laser trap based on axicons / B. Shao, S.C. Esener, J.M. Na­scimento, M.W. Berns, E.L. Botvinick and M. Ozkan // Optics Letters. – 2006. – Vol. 31. – P. 3375-3377.
  27. Khonina, S.N. Fractional axicon as a new type of diffractive optical element with conical focal region / S.N. Khonina, A.V. Ustinov, S.G. Volotovsky // Precision Instrument and Mechanology. – 2013. – Vol. 2, Iss. 4. – PP. 132-143.
  28. Ustinov, А.V.  Geometrooptic analysis of generalized refractive lenses / A. V. Ustinov, S. N. Khonina // Bulletin of Samara Scientific Center of RAS. – 2012. – V. 14(4).– P. 28-37. – (In Russian).
  29. Ustinov, A.V.  Generalized lens: сalculation of distribution on the optical axis / A.V. Ustinov, S.N. Khonina // Computer Optics. – 2013. – V. 37(3). – P. 307-315. – (In Russian).
  30. Ustinov, A.V. Analysis of flat beam diffraction by divergent fracxicon in nonparaxial mode / A.V. Ustinov, S.N. Khonina // Computer Optics. – 2014. – V. 38(1). – P. 42-50. – (In Russian).
  31. Ditkin, V.A.  Integral transforms and operational calculus  / V.A. Ditkin and A.P. Prudnikov. –  Мoscow: "Fizmatlit" Publisher, 1961. – Charters VII, VIII. – (In Russian).
  32. Ustinov, A.V. Analysis of laser beam diffraction by axicon with the numerical aperture above limiting / A.V. Ustinov, S.N. Khonina // Computer Optics. – 2014. – Vol. 38(2). – P. 213-222. – (In Russian).
  33. Durnin, J. Diffraction-free beams / J. Durnin, J.J. Mi­celi and J.H. Eberly // Physics Review Letters. – 1987. – V. 58, Issue 15. – P. 1499-1501.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20