(39-1) 02 * <<>> * Russian * English * Content * All Issues

Analysis of interference of radially polarized laser beams generated by ring optical elements with a vortex phase at sharp focusing
Khonina S.N.
, Ustinov A.V.

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-1-12-25

Full text of article: Russian language.

 PDF

Abstract:

We theoretically analyze sharp focusing of radially polarized beams by a focusing system containing ring apertures and a vortex-phase optical element in the pupil. Analytic expressions for a field in the focal area for the radially polarized beams for one- and two-ring apertures are obtained. Asymptotic expressions for the focal field at a distance from the optical axis are also derived.
It is shown that for a single vortex-phase narrow ring aperture, the field distribution in the focal area is proportional to the superposition of Bessel functions of different orders. The field is shown to possess the axial symmetry and be independent of the longitudinal coordinate. The structure of the interference field for the radially polarization is investigated.
With two narrow ring apertures in the pupil of the sharp-focus system, the interference pattern of two vector Bessel-type beams is formed in the focal area. If both ring apertures have the same vortex phase, the field in the focal area remains axis-symmetric, although becoming periodically dependent on the longitudinal coordinate. If each ring has a different-order vortex phase, the interference is more complex and leads to the formation of rotating beams. The three-dimensional structure in the focal area can be controlled by varying the polarization and phase distribution in each of the rings.

Keywords:
sharp focusing, ring aperture, radial polarization, vortex phase, interference, three-dimensional intensity distribution.

Citation:
Khonina SN, Ustinov AV. Analysis of interference of radially polarized laser beams generated by ring optical elements with a vortex phase at sharp focusing. Computer Optics 2015; 39(1): 12-25. DOI: 10.18287/0134-2452-2015-39-1-12-25.

References:

  1. Dienerowitz, M. Optical manipulation of nanoparticles: a review / M. Dienerowitz, M. Mazilu, and K. Dholakia // Journal of Nanophotonics. – 2008. – Vol. 2 – P. 021875.
  2. Martínez-Corral, M. The resolution challenge in 3D optical microscopy / M. Martínez-Corral and G. Saavedra // Progress in Optics. – 2009. – Vol. 53. – P. 1-67.
  3. Walker, E. Toward terabyte two-photon 3D disk / E. Walker, A. Dvornikov, K. Coblentz, S. Esener and P. Rentzepis // Optics Express. – 2007. – Vol. 15. – P. 12264- 12276.
  4. Khonina, S.N. Formation of light balls on the basis of interference of oncoming fine-focused beams with different polarizations / S.N. Khonina, A.V. Ustinov // Herald of Samara State University. – 2013. – Vol. 2(40). – P. 208-224. – (In Russian).
  5. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis and G. Leuchs // Physical Review Letters. – 2003. – Vol. 91. – P. 233901.
  6. Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / N. Davidson and N. Bokor // Optics Letters. – 2004. – Vol. 29. – P. 1318-1320.
  7. Kalosha, V.P. Toward the subdiffraction focusing limit of optical superresolution / V.P. Kalosha and I. Golub // Optics Letters. – 2007. – Vol. 32. – P. 3540-3542.
  8. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // Journal of Optical Society of America A. – 2007. – Vol. 24. – P. 1793.
  9. Khonina, S.N. Sharper focal spot for a radially polarized beam using ring aperture with phase jump / S.N. Khonina and A.V. Ustinov // Journal of Engineering. – 2013. – ID 512971.
  10. Khonina, S.N. Investigation of axicon application in high-aperture focusing system / S.N. Khonina and S.G. Volo­tovsky // Computer Optics. – 2010. – Vol. 34(1). – P. 35-51. – (In Russian).
  11. Khonina, S.N. Reduction of the focal spot size in high-aperture focusing systems at inserting of aberrations / S.N. Khonina and E.A. Pelevina // Optical Memory and Neural Networks (Information Optics), Allerton Press. – 2011. – Vol. 20(3). – P. 155-167.
  12. Khonina, S.N. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions / S.N. Khonina // Optical Engineering. – 2013. – Vol. 52, Issue 9. – P. 091711.
  13. Hell, S. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation / S. Hell and E.H.K. Stelzer // Optics Communications. – 1992. – Vol. 93. – P. 277-282.
  14. Bokor, N. Toward a spherical spot distribution with 4p focusing of radially polarized light / N.  Bokor, N. Davidson // Optics Letters. – 2004. – Vol. 29, Issue 17. – P. 1968-1970.
  15. Sandeau, N. Arrangement of a 4Pi microscope for reducing the confocal detection volume with two-photon excitation / N. Sandeau, H. Giovannini // Optics Communications. – 2006. – Vol. 264. – P. 123-129.
  16. Bokor, N. A three dimensional dark focal spot uniformly surrounded by light / N. Bokor, N. Davidson // Optics Communications. – 2007. – Vol. 279. – P. 229-234.
  17. Chen, Z. 4pi focusing of spatially modulated radially polarized vortex beams / Z. Chen, D. Zhao // Optics Letters. – 2012. – Vol. 37, Issue 8. – P. 1286-1288.
  18. Khonina, S.N. Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations / S.N. Khonina, A.V. Ustinov, S.G. Volotovsky // Optics & Laser Technology. – 2014. – Vol. 60. – P. 99-106.
  19. Khonina, S.N. Sharper focal spot for a radially polarized beam using ring aperture with phase jump / S.N. Kho­nina, N.S. Fidirko // Izvestiya of the SSC of RAS. – 2014. – Vol. 16(4). – P. 27-33. – (In Russian).
  20. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan / Optics Communications. – 2006. – Vol. 265. – P. 411-417.
  21. Jabbour, T.G. Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates / T.G. Jabbour, S.M. Kuebler // Optics Express. – 2006. – Vol. 14, Issue 3. – P. 1033-1043.
  22. Gao, X. Focusing properties of concentric piecewise cylindrical vector beam / X. Gao, J. Wang, H. Gu, W. Xu // Optik. – 2007. – Vol. 118. – P. 257-265.
  23. Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. - 2010. - Vol. 27(10). - P. 2188-2197.
  24. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. – 2011. – Vol. 58, Issue 9. – P. 748-760.
  25. Khonina, S.N. Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy and S.G. Volotovsky // Optical Memory and Neural Networks (Information Optics). – 2011. – Vol. 20, Issue 1. – P. 23-42.
  26. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Qiwen Zhan // Advances in Optics and Photonics. – 2009. – Vol. 1. – P. 1457.
  27. Khonina, S.N. Thin light tube formation by tightly focused azimuthally polarized light beams / S.N. Khonina, A.V. Ustinov // ISRN Optics (Hindawi Publishing Corporation). – 2013. – Article ID 185495. – 6 p.
  28. Bouchal, Z. Non-diffractive vector Bessel beams / Z. Bouchal, M. Olivík // Journal of Modern Optics. – 1995. – Vol. 42, Issue 8. – P. 1555-1566.
  29. Dudley, A. Generating and measuring nondiffracting vector Bessel beams / A. Dudley, Y. Li, T. Mhlanga, M. Escuti, A. Forbes // Optics Letters. – 2013. – Vol. 38, Issue 17. – P. 3429-3432.
  30. Kotlyar, V.V. An algorithm for the generation of laser beams with longitudinal periodicity: rotating images / V.V. Kotlyar, V.A. Soifer, S.N. Khonina // Journal of Mo­dern Optics. – 1997. – Vol. 44, Issue 7. – P. 1409-1416.
  31. Paakkonen, P. Rotating optical fields: experimental demonstration with diffractive optics / P. Paakkonen, J. Lautanen, M. Honkanen, M. Kuittinen, J. Turunen, S.N. Khonina, V.V. Kotlyar, V.A. Soifer, A.T. Friberg // Journal of Modern Optics. – 1998. – Vol. 45, Issue 11. – P. 2355-2369.
  32. Porfirev, A.P. A simple method of the formation nondiffracting hollow optical beams with intensity distribution in form of a regular polygon contour / A.P. Porfirev, R.V. Skidanov // Computer optics. – 2014. – Vol. 38(2). – P. 243-248. – (In Russian).
  33. Fidirko, N.S. Formation of three-dimensional intensity distributions by diffraction of laser radiation on annular apertures at sharp focusing / N.S. Fidirko, S.N. Khonina // Proceedings of the SSC of RAS. – 2014. – Vol. 16, Issue 6. – P. 19-25. – (In Russian).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20