Calculation of eigenfunctions of a bounded fractional Fourier transform
  M.S.  Kirilenko, R.O. Zubtsov, S.N. Khonina
   
  Image Processing Systems  Institute, Russian Academy of Sciences,
   Samara State Aerospace University
Full text of article: Russian language.
 PDF
  PDF
Abstract:
In this paper we  consider the use of a one-dimensional fractional Fourier transform for gradient-index  optical waveguides. We calculate eigenfunctions of the transform in view of a  limited range in the spatial and spectral domain.
Keywords:
fractional Fourier  transform, bounded paraxial operator, eigenfunctions, Hermite-Gaussian modes,  spheroidal wave functions.
Citation:
Kirilenko MS, Zubtsov RO,  Khonina SN. Calculation of eigenfunctions of a bounded fractional Fourier  transform. Computer Optics 2015; 39(3): 332-8. DOI: 10.18287/0134-2452-2015-39-3-332-338.
References:
  - Namias V. The fractional  Fourier   transform  and  its  application  in quantum mechanics. J Inst Math Appl 1980; 25:  241-65.
- Abet S, Sheridant JT. Generalization  of the fractional Fourier transformation to an arbitrary linear lossless  transformation: an operator approach. J Phys A: Math Gen 1994; 27: 4179-87.
- Alieva  T, Bastiaans MJ, Calvo ML. Fractional transforms in  optical information processing. EURASIP J Appl Signal Processing 2005; 10: 1-22.
- Dorsch RG, Lohmann AW. Fractional  Fourier transform used for a lens-design problem. Appl Opt 1995; 34(20):  4111-2.
- Cai LZ, Wang YQ. Optical  implementation of scale invariant fractional Fourier transform of continuously  variable orders with a two-lens system. Opt Laser Technol 2002; 34: 249-52.
- Malutin ��. Use of fractional  Fourier-transformation in π/2-converters of laser modes. Quantum Electronics  2004; 2: 165-71. 
- Hahn J. Optical implementation  of iterative  fractional  Fourier transform algorithm. Opt Expr 2006;  14(23): 11103-12.
- Khonina SN, Karpeev SV, Ustinov  AV. Functional enhancement of mode astigmatic converters �n the basis of  application of diffractive optical elements. News of the Samara   Science Center  of the RAS 2009; 11(5): 13-23.
- Abramochkin E, Volostnikov V. Beams  transformations and nontransformed beams. Opt Commun 1991; 83: 123-35.
- Beijersbergen MW, Allen L, van der Veen H.E.L.O.,  Woerdman JP. Astigmatic  laser mode converters and transfer of orbital angular momentum. Opt Commun 1993;  96: 123-32.
- Ozaktas HM, Mendlovic D. Fourier  transforms of fractional order and their optical interpretation. Opt Commun 1993;  101: 163-9.
- Mendlovic D, Ozaktas HM. Fractional  Fourier transforms and their optical implementation: I. J Opt Soc Am A 1993; 10(9):  1875-81.
- Goodman JW. Introduction to  Fourier optics. McGraw-Hill, 1996. 
- McMullin JN. The ABCD matrix in  arbitrarily tapered quadratic-index waveguides. Appl Opt 1986; 25: 2184.
- Striletz AS, Khonina SN.  Matching and investigation methods based on differential and integral operators  of laser radiation propagation in a medium with small inhomogeneities. Computer  Optics 2008; 32(1): 33-8.
- Yariv A. Quantum Electronics. 2nd ed. New York: Wiley, 1975.
- Lanczos C. Linear Diffrential  Operators. London:  Van Nostrand, 1961.
- Slepian D, Sonnenblick E. Eigenvalues  associated with prolate spheroidal wave functions of zero order. The Bell System Technical  Journal 1965; 44: 1745-63. 
- Khonina SN. Approximation of  spheroidal wave functions by finite series. Computer Optics 1999; 19: 65-70.
- Khonina SN, Volotovskii SG, Soifer VA. A method of eigenvalue  calculation of the zero order prolate spheroidal functions. Reports of the Russian Academy of Sciences 2001; 376(1): 30-2.
- Volotovskii SG, Kazanskii NL,  Khonina SN. Analysis and development of the methods for calculating eigenvalues  of prolate spheroidal functions of zero order. Pattern Recognition and Image  Analysis 2001; 11(3): 633-48.
- Khonina SN. Investigation of the matrix  method of the zero order prolate spheroidal functions calculating. News of the Samara Science   Center of the RAS 2001; 3(1): 111-7.
- Slepian D, Pollak HO. Prolate  spheroidal wave functions, Fourier analysis and uncertainty – I. Bell Syst Technol  J 1961, 40: 43-63.
- Brovarova MA, Khonina SN. Increasing  resolution using  prolate spheroidal  wave functions. Computer Optics 2001; 21: 53-7.
- Khonina SN, Kotlyar VV. Generating  light fields matched to the spheroidal wave-function basis. Optical Memory and  Neural Networks 2001; 10(4): 267-76.
-   Kirilenko MS, Khonina SN. Coding of an optical signal by a superposition  of spheroidal functions for undistorted transmission of information in the lens  system. Proc SPIE 2014; 9156: 91560J. 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20