An automatic method for estimating the geomagnetic field
O.V. Mandrikova, E.A. Zhizhikina

 

Institute of Cosmophysical Research and Radio-Wave Propagation of the Far Eastern Branch of the Russian Academy of Sciences (IKIR FEB RAS),
Kamchatka State Technical University

Full text of article: Russian language.

 PDF

Abstract:
We introduce a new method for estimating the geomagnetic field. The method is based on a combination of a wavelet transform with radial basis neural networks. In the method, the recorded geomagnetic field variations are decomposed into different-scale components and the degree of disturbance of each component is estimated, enabling the conclusion about the field state.  For the verification of the method, we used geomagnetic data from the "Paratunka" station (Paratunka, Kamchatka region, data registration is carried out by IKIR FEB RAS).
Analysis of the spectral-temporal characteristics of geomagnetic field variations during periods of moderate and strong magnetic storms was performed. Weak perturbations were detected in the geomagnetic field before the storms. The obtained results have confirmed the effectiveness of the proposed method.

Keywords:
neural networks, wavelet transform, geomagnetic data, Earth's magnetic field.

Citation:
Mandrikova OV, Zhizhikina EA. An automatic method for estimating the geomagnetic field. Computer Optics 2015; 39(3): 420-8. DOI: 10.18287/0134-2452-2015-39-3-420-428.

References:

  1. Bud’ko NI, Zaitsev AN, Karpachev AT, Kozlov AN, Filippov BP. Space Around Us [In Russian]. Ed by Zaitsev AN. Troitsk: TROVANT; 2006.
  2. Belinskaya AYu, Khomutov SY. The possible of magnetic-ionospheric observations in problems of prediction and diagnosis of nature and anthropogenic extremal events [In Russian]. Interexpo Geo Siberia 2012; 3: 37-45.
  3. Gvishiani A, Lukianova R, Soloviev A, Khokhlov A. Survey of geomagnetic observations made in the northern sector of Russia and new methods for analysing them. Surveys in Geophysics 2014; 35(5): 1123-54.
  4. Mandrikova OV, Solovyev IS, Geppener VV, Klionsky DM, Al-Kasabeh RT. Analysis of the Earth’s magnetic field variations on the basis of a wavelet-based approach. Digital Signal Processing 2013; 23: 329-39.
  5. Wagner C-U, Mohlmann D, Schafer K, Mishin VM, Matveev MI. Large scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere, Space Sci. Rev. 1980; 26: 391-446.
  6. Yanovskiy BM. Terrestrial magnetism [In Russian]. Leningrad: Leningrad University Press; 1978.
  7. Odintsov VI, Rotanova NM, Tsvetkov YuP, Chenchang A. Spectrum analysis of the anomalous geomagnetic field for different-altitude surveys. Geomagnetism and Aeronomy 2000; 40(2): 190-7.
  8. Kato H, Takiguchi Y, Fukayama D, Shimizu Y, Maruyama T, Ishii M. Development of automatic scaling software of ionospheric parameters. Journal of the National Institute of Information and Communications Technology 2009; 56: 465-74.
  9. Hamoudi M, Zaourar N, Mebarki R, Briqueu L, Parrot M. Wavelet analysis of ionospheric disturbances. Geophysical Research Abstracts. EGU General Assembly 2009; 11: EGU2009-8523.
  10. Akyilmaz O, Kutterer H, Shum CK, Ayan T. Fuzzy-wavelet based prediction of Earth rotation parameters. Applied Soft Computing 2011; 11(1): 837-41.
  11. Zaourar N, Hamoudi M, Mandea M, Balasis G, Holschneider M. Wavelet-based multiscale analysis of geomagnetic disturbance. Earth, Planets and Space 2013; 65: 1525-40.
  12. Ghamry E, Hafez A, Yumoto K, Yayama H. Effect of SC on frequency content of geomagnetic data using DWT application: SC automatic detection. Earth, Planets and Space 2013; 65: 1007-15.
  13. Mandrikova �V, Bogdanov VV, Solov’ev IS. Wavelet analysis of geomagnetic field data. Geomagnetism and Aeronomy 2013; 53(2): 268-73.
  14. Mandrikova �V, Solovev IS, Zalyaev TL. Methods of analysis of geomagnetic field variations and cosmic ray data. Earth, Planets and Space 2014; 66: 148.
  15. Mandrikova OV, Zhizhikina EA. Estimation of degree of the geomagnetic field disturbance based on the combined use of wavelet transform with radial neural networks [In Russian]. Machine Learning and Data Analysis 2014; 1(10): 1335-44.
  16. Yu ZG, Anh V, Wang Y, Mao D, Wanliss J. Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition. Journal of Geophysical Research 2010; 115(A10): DOI: 10.1029/2009JA015206.
  17. Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image PSrocessing 2003: 112-114.
  18. Pavlov AN, Filatova AE. Method of empirical modes and wavelet-filtering: application in geophysical problems [In Russian]. Izvestiya VUZ. Applied Nonlinear Dynamics 2011; 19(1): 3-13.
  19. Mallat S. A wavelet tour of signal processing. London: Academic Press; 1999.
  20. Klionskiy DM, Oreshko NI, Geppener VV. New approach to automatic pattern extraction in telemetric signals on the basis of the empirical mode decomposition [In Russian]. Belgorod State University Scientific Bulletin 2009; 12(15-1): 118-29.
  21. Mandrikova OV, Polozov YuA. Criteria of a choice wavelet-function in problems of approximation of natural time numbers difficult structure [In Russian]. Information Technologies 2012; 1: 31-6.
  22. Huang NE, Shen SS. Hilbert-Huang transform and its applications. Singapore: World Scientific Press Co. Pte. Ltd; 2005.
  23. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. So�. London, Ser. A 1998; 454: 903-95.
  24. Nayar SRP, Radhika VN, Seena PT. Investigation of substorms during geomagnetic storms using wavelet techniques. Proceedings of the ILWS Workshop Goa, India; 2006.
  25. Rotanova NM, Bondar TN, Ivanov VV. Wavelet-analysis of secular geomagnetic variations. Geomagnetism and Aeronomy 2004; 44(2): 252-8.
  26. Hafez AG, Ghamry E, Yayama H, Yumoto K. Systematic examination of the geomagnetic storm sudden commencement using multi resolution analysis. Advances in Space Research 2013; 51: 39–49.
  27. Xu Z, Zhu L, Sojka J, Jach A. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index. J. Atmos. Solar–Terr. Phys. 2008; 70: 1579–88.
  28. Jach A, Kokoszka P, Sojka J, Zhu L. Wavelet-based index of magnetic storm activity. J. Geophys. Res. 2006; 111(A09215): doi: 10.1029/2006JA011635.
  29. Sirota AA, Solomatin AI, Voronova EV. Two-staged algorithm for detecting and rating the object cutouts on the images in case of additive noise and deformed distortions [In Russian]. Computer Optics 2010; 34(1): 109-17.
  30. Savchenko AV. Image recognition on the basis of probabilistic neural network with homogeneity testing [In Russian]. Computer Optics 2013; 37(2): 254-62.
  31. Soldatova OP, Garshin AA. Convolutional neural network applied to handwritten digits recognition [In Russian]. Computer Optics 2010; 34(2): 252-9.
  32. Barkhatova OM. Nonlinear connection between the auroral (AU, AL) and mid-latitude (SYM-H, ASY-H) geomagnetic activity indices at the main phase of geomagnetic storm [In Russian]. Solar-Terrestrial Physics 2013; 23: 100-8.
  33. Uwamahoro J, McKinnell LA, Habarulema JB. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Annales Geophysicae 2012; 30: 963-72.
  34. Barkhatov NA, Belliustin NS, Bougeret JL, Sakharov SYu, Tokarev YuV. Influence of the solar-wind magnetic field on the magnetosheath turbulence behind the bow shock. Radiophysics and Quantum Electronics 2001; 44(12): 915-23.
  35. Neuromathematic [In Russian]. Ed by Galushkin AI. Moscow: IZHPR; 2002.
  36. Haykin S. Neural Networks: A Comprehensive Foundation. New Jersey: Prentice Hall; 1999.
  37. Mandrikova OV, Zhizhikina EA. Geomagnetic data analysis based on the combination of wavelet transform with radial basis neural networks [In Russian]. Digital Signal Processing and Its Applications. Proceedings of the 16-th International Conference 2014; 573-8.
  38. Mandrikova OV, Zhizhikina EA. Estimation of degree of the geomagnetic field disturbance based on the combined use of wavelet transform with radial neural networks [In Russian]. 17th International Conference on Soft Computing and Measurements. Proceedings of Conference 2014; 2: 223-6.
  39. Federal State Budgetary Institution “Fedorov Institute of Applied Geophysics”. Source: [http://ipg.geospace.ru/].

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20