Generation of radially polarized beams based on the refractive optical elements with interference polarizing coatings
V.D. Paranin, S.V. Karpeev, S.N. Khonina

 

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Full text of article: Russian language.

 PDF

Abstract:
The calculation and simulation of an interference polarizer to generate radially polarized light are conducted. The method is based on the conversion of a conical wavefront as it passes through the interference polarizer. A multilayer optical coating can be applied on the surface of the axicon. It is shown that in this way we noticeably reduce both the operating angle of incidence and achieve a practically significant polarization degree of the generated beam at much lower energy losses.

Keywords:
multilayer optical coatings, interference polarizer, axicon, radial polarization.

Citation:
Paranin VD, Karpeev SV, Khonina SN. Generation of radially polarized beams based on the refractive elements with interference polarizing coatings. Computer Optics 2015; 39(4): 492-9. DOI: 10.18287/0134-2452-2015-39-4-492-499.

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 2009; 1: 1-57.
  2. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Applied Optics 1990; 29: 2234-9.
  3. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams. J Opt Soc Am A 2011; 28(10): 2115-23.
  4. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Optics Letters 2012; 37(12): 2385-7.
  5. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Applied Optics 2010; 49(10): 1734-8.
  6. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beam. Optics Letters 2007; 32(11): 1468-70.
  7. Kawauchi H, Kozawa Y, Sato S, Sato T, Kawakami S. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate. Optics Letters 2008; 33(4): 399-401.
  8. Lai WJ, Lim BC, Phua PB, Tiaw KS, Teo HH, Hong MH. Generation of radially polarized beam with a segmented spiral varying retarder. Optics Express 2008; 16(20): 15694-9.
  9. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates [in Russian]. Computer Optics 2014; 38(1): 57-64.
  10. Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters 2001; 26(18): 1424-6.
  11. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Optics Letters 2008; 33(23): 2782-4.
  12. Chadyani Z, Dmitriev S, Lindlein N, Leuchs G, Rusina O, Harder I. Discontinuous space variant sub-wavelength structures for generating radially polarized light in visible region. Journal of the European Optical Society – Rapid Publications 2011; 6: 11041-7.
  13. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial [in Russian]. Computer Optics 2014; 38(2): 229-36.
  14. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Applied Optics 2007; 46: 3304-10.
  15. Yonezawa K, Kozawa Y, Sato S. Compact laser with radial polarization using birefringent laser medium. Japanese Journal of Applied Physics 2007; 46: 5160-3.
  16. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. Journal of Optics 2015; 17: 065001 (11pp).
  17. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Optics Letters 2005; 30: 3063-5.
  18. R.V. Skidanov, A.A. Morozov Diffractive optical elements for forming radially polarized light, based on the use stack of stoletov. Computer Optics 2014; 38(4): 614-8.
  19. Akhmanov SA, Nikitin SYu. Physical optics. Oxford: Clarendon Press. 1997.
  20. Putilin ES. Optical Coating. Textbook [in Russian]. Saint-Petersburg: St. Petersburg ITMO, 2010.
  21. McLeod JH. The Axicon: A New Type of Optical Element. J Opt Soc Am 1954; 44: 592-7.
  22. Jaroszewicz Z, Burvall A, Friberg AT. Axicon – the Most Important Optical Element. Optics & Photonics News 2005; 16(4): 34.
  23. Kazanskiy NL, Kharitonov SI, Khonina SN, Volotovskiy SG. Simulation of spectral filters used in hyperspectrometer by decomposition on vector Bessel modes. Proceedings of SPIE 2015; 9533: 95330L (7 pp).

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20