Retroperitoneal space organ segmentation from ct images based on the level set  function
  R.V. Eruslanov, M.N. Orehova, V.N. Dubrovin
   
  Volga State University of Technology, 
  Republican Clinical Hospital of the Mary-El Republic
Full text of article: Russian language.
 PDF
  PDF
Abstract:
This article presents a  method for solving a problem of segmentation of the retroperitoneal space  organs from tomographic images. The method relies on the level set function. We  also discuss a method of image preprocessing based on a nonlinear anisotropic  diffusion filter, which operates by smoothing the image, while maintaining  boundaries between the segments. A tomographic-image segmentation algorithm  based on the level set function is synthesized. 
Keywords:
segmentation,  computer tomography, retroperitoneal space organs, CT (computed tomography),  image processing, anisotropic diffusion, nonlinear filtration, level set,  active contour.
Citation:
Eruslanov RV, Orehova  MN, Dubrovin VN. Retroperitoneal space organ segmentation from CT images based  on the level set function. Computer Optics 2015;  39(4): 592-9. DOI: 10.18287/0134-2452-2015-39-4-592-599.
References:
  - Blackmore CC, Mecklenburg RS, Kaplan  GS. Effectiveness of clinical decision support in controlling inappropriate  imaging. Journal of the American College of Radiology 2011; 8(1): 19-25.
- Brouwer OR, Buckle T, Bunschoten A,  Kuil J, Vahrmeijer AL, Wendler T, Valdés-Olmos RA, Van Der Poel HG, Van Leeuwen  FWB. Image navigation as a means to expand the boundaries of  fluorescence-guided surgery. Physics in Medicine and Biology 2012; 57(10): 3123-36.
- Rozhentsov ��, Doubrovin VN, Bayev ��, Naoumov �S. 3D  image generation at prostata gland transurethral resection [In Russian]. Vest.  Povol. Gos. Tekhn. Univ. 2008; 3 : 45-50.
- Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH,  Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy:  toward real-time 3D - CT to stereoscopic video registration. Urology 2009; 73: 896-900.
- Mitterberger M, Pinggera GM, Peschel R, Bartsch G, Pallwein  L, Frauscher F. The use of three-dimensional computed tomography for assessing  patients before laparoscopic adrenal-sparing surgery. BJU Int 2006; 98(5): 1068-73.
- Dubrovin VN, Bashirov VI, Eruslanov  RV, Furman YA, Kudryavtsev AA. The first experience of computer optimization  method of minimally invasive surgical approach based on preoperational  tomographic data in performing retroperitoneoscopic ureterolithotomy [In  Russian]. Medical bulletin of Bashkortostan 2013; 8(3): 38-41. 
- Volonté F, Pugin F, Bucher P,  Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation  with OsiriX in laparoscopic and robotic surgery: Not only a matter of fashion. Journal  of Hepato-Biliary-Pancreatic Sciences 2011; 18(4): 506-9.
- Sharp G, Fritscher KD, Pekar V,  Peroni M, Shusharina N, Veeraraghavan H, Yang J. Vision 20/20: Perspectives on  automated image segmentation for radiotherapy. Medical Physics 2014; 41(5): DOI:  10.1118/1.4871620.
- Emel'ianov SI, Veredchenko VA,  Pushkar' DY, Mitichkin AE, Veredchenko AV,  Shcherbakov NV. The use of intraoperative navigation in laparoscopic  nephrectomy [In Russian]. Endoscopic surgery 2009; 2: 32-5.
- Huppertz A, Radmer S, Asbach P,  Juran R, Schwenke C, Diederichs G, Hamm B, Sparmann M. Computed tomography for  preoperative planning in minimal-invasive total hip arthroplasty: Radiation  exposure and cost analysis. European Journal of Radiology 2011; 78(3): 406-13.
- Dubrovin VN, Bashirov VI, , Furman  YaA, Rozhentsov AA, Kudryavtsev AA., Eruslanov RV, Bayev ��, Nazarov IL.  Hardware/software complex for selection optimal  location for a trocar in laparoscopy [In Russian]. Pat RF of Invent N127615 of August  15, 2012.
- Dubrovin VN, Bashirov VI, Furman YA,  Rozhentsov AA, Yeruslanov RV, Kudryavtsev AA. Choice of surgical access for  retroperitoneoscopic ureterolithotomy according to the results of 3D  reconstruction of operational zone agreed with the patient: initial experience.  Central European Journal of Urology 2013; 66(4): 447-52. 
- Dubrovin VN, Bashirov VI, Furman YA,  Rozhentsov AA, Eruslanov RV, Kudryavtsev AA. Optimization of computer-assisted  surgical access during the retroperitoneal endoscopic ureterolithotomy using  the patient coordinated 3D reconstruction of the operation area [In Russian]. Experimental  and Clinical Urology 2013; 4: 86-9.
- Koss JE, Newman FD, Johnson TK,  Kirch DL. Abdominal organ segmentation using texture transforms and a hopfield  neural network. Correspondences of IEEE Transaction on Medical Imaging 1999; 18(7):  640-8.
- Lee CC, Chung PC, Tsai HM. Identifying  multiple abdominal organs from CT image series using a multimodule contextual  neural network and spatial fuzzy rules. IEEE Transaction on Information  Technology in Biomedicine  2003; 7: 208-17.
- Soler L, Delingette H, Malandain G,  Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D,  Marescaux J. Fully automatic anatomical, pathological, and functional  segmentation from CT scans for hepatic surgery. Computed Aided Surgery 2001; 6(3):  131-42.
- Lamecker H, Lange T, Seebass M. Segmentation  of the liver using a 3D statistical shape model. ZIBReport 04-09 (April 2004)  2004: 1-25. DOI:10.1.1.90.6969.
- Park H, Bland  P, Meyer C. Construction of an abdominal probabilistic atlas and its  application in segmentation.  IEEE  Transactions on Medical Imaging 2003; 22(4): 483-92.
- Zhou X, Kitagawa T, Hara T, Fujita  H, Zhang X, Yokoyama R, Kondo H, Kanematsu M, Hoshi H. Constructing a  Probabilistic Model for Automated Liver Region Segmentation Using Non-contrast  X-Ray Torso CT images. Medical Image Computing and Computer-Assisted  Intervention – MICCAI 2006.; 4191: 856-63. 
- Lefhohn A, Cates JE, Whitaker RT. Interactive,  GPU-based level sets for 3D segmentation. Medical Image Computing and Computer-Assisted  Intervention - MICCAI 2003; 2878: 564-72.
- Cates J, Lefohn A, Whitaker R. GIST:  an interactive, GPU-based level set segmentation tool for 3D medical images.  Medical Image Analysis 2004; 8(3): 217-31.
- Sethain JA. Level Set Methods and  Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid  Mechanics, Computer Vision, and Materials Science. Cambridge University Press;  1999.
- Osher S, Paragois N. Geometric Level  Set Methods in Imaging, Vision, and Graphics. Springer-Verlag New York,Inc.;  2003.
- Perona P, Malik J. Scale space and  edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis  and Machine Intelligence 1990; 12(7): 629-39.
- Gerig G, Kikinis R, Kübler O, Jolesz  FA. Nonlinear Anisotropic Filtering of MRI Data. IEEE Transactions on Medical  Imaging 1992; 11(2): 221-32.
- Lefohn AE, Kniss JM, Hansen CD,  Whitaker RT. A streaming narrow-band algorithm: Interactive computation  and visualization of level sets. IEEE Trans. on Visualization and Computer  Graphics 2004; 10(4): 422-433.
-   Lemeshko BY, Lemeshko SB, Postovalov SN, Chimitova  EV. Statistical data analysis, simulation and study of probability  regularities. Computer approach: monograph. [In Russian].  – Novosibirsk : NSTU Publisher; 2011. 
  
© 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20