On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators
D.A. Bykov, L.L. Doskolovich

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We propose a generalization of the Fourier modal method aimed at calculating localized eigenmodes of integrated optical resonators. The method is based on constructing an analytical continuation of the structure’s scattering matrix and calculating its poles. The method allows one to calculate the complex frequency of the localized mode and the corresponding field distribution. We used the proposed method to calculate modes of a rectangular dielectric block located on a metal surface. We show that the excitation of these modes by the surface plasmon-polariton (SPP) results in resonant features in the SPP transmission spectrum. In a magnetized structure, the mode excitation results in resonant magneto-optical effects. The proposed method can be used to design and investigate optical properties of integrated and plasmonic optical devices.

Keywords:
resonator, Fourier modal method, eigenmode, resonance, magneto-optical effect.

Citation:
Bykov DA, Doskolovich LL. On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators. Computer Optics 2015; 39(5): 663-73. – DOI: 10.18287/0134-2452-2015-39-5-663-673.

References:

  1. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T. Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 2002; 66(4): 045102. DOI: 10.1103/PhysRevB.66.045102.
  2. Gippius NA, Tikhodeev SG, Ishihara T. Optical properties of photonic crystal slabs with an asymmetrical unit cell. Phys Rev B 2005; 72(4): 045138. DOI: 10.1103/PhysRevB.72.045138.
  3. Weiss T, Granet G, Gippius NA, Tikhodeev SG, Giessen H. Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates. J Opt Soc Am A 2011; 28(2): 238-44. DOI: 10.1364/JOSAA.28.000238.
  4. Belotelov VI, Kalish AN, Zvezdin AK, Gopal AV, Vengurlekar AS. Fabry–Perot plasmonic structures for nanophotonics. J Opt Soc Am B 2012; 29(3): 294-9. DOI: 10.1364/JOSAB.29.000294.
  5. Bykov DA, Doskolovich LL. Magneto-optical resonances in periodic dielectric structures magnetized in plane. J Mod Opt 2010; 57(17): 1611-8. DOI: 10.1080/09500340.2010.514074.
  6. Bykov DA, Doskolovich LL. Numerical methods for calculating poles of the scattering matrix with applications in grating theory. J Lightw Technol 2013; 31(5): 793-801. DOI: 10.1109/JLT.2012.2234723.
  7. Moharam MG, Grann EB, Pommet DA, Gaylord TK. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 1995; 12(5): 1068-76. DOI: 10.1364/JOSAA.12.001068.
  8. Silberstein E, Lalanne P, Hugonin J-P, Cao Q. Use of grating theories in integrated optics. J Opt Soc Am A 2001; 18(11): 2865-75. DOI: 10.1364/JOSAA.18.002865.
  9. Hugonin J-P, Lalanne P. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J Opt Soc Am A 2005; 22(9): 1844-9. DOI: 10.1364/JOSAA.22.001844.
  10. Mandelshtam VA, Taylor HS. Harmonic inversion of time signals and its applications. The Journal of Chemical Physics 1997; 107(17): 6756-69. DOI: 10.1063/1.475324.
  11. Vallius T, Tervo J, Vahimaa P, Turunen J. Electromagnetic field computation in semiconductor laser resonators. J Opt Soc Am A 2006; 23(4): 906-11. DOI: 10.1364/JOSAA.23.000906.
  12. Armaroli A, Morand A, Benech P, Bellanca G, Trillo S. Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method. J Opt Soc Am A 2008; 25(3): 667-75. DOI: 10.1364/JOSAA.25.000667.
  13. Li L Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 1996; 13(5): 1024-35. DOI: 10.1364/JOSAA.13.001024.
  14. Bykov DA, Doskolovich LL, Soifer VA. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals. J Opt Soc Am A 2012; 29(8): 1734-40. DOI: 10.1364/JOSAA.29.001734.
  15. Bezus EA, Bykov DA, Doskolovich LL, Kovalev AA, Kotlyar VV, Nalimov AG, Porfirjev AP, Skidanov RV, Soifer VA, Stafeev SS, Khonina SN. Diffractive optics and nanophotonics. Ed. by Soifer VA. [In Russian]. Moscow: Fizmatlit; 2014. ISBN: 978-5-9221-1571-1.
  16. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-86. DOI: 10.1364/JOSAA.12.001068.
  17. Li L. Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 1996; 13(9): 1870-6. DOI: 10.1364/JOSAA.13.001870.
  18. Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly 1955; 2(1-2): 83-97. DOI: 10.1002/nav.3800020109.
  19. Kirilenko AA, Tysik BG. Connection of S-matrix of waveguide and periodical structures with complex frequency spectrum. Electromagnetics 1993; 13(3): 301-18. DOI: 10.1080/02726349308908352.
  20. Rakic AD, Djurišic AB, Elazar JM, Majewski ML. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 1998 Aug; 37(22): 5271-83. DOI: 10.1364/AO.37.005271.
  21. Haitao L; Lalanne P, Xiaoyan Y., Hugonin J-P. Surface plasmon generation by subwavelength isolated objects. IEEE Journal of Selected Topics in Quantum Electronics, 2008; 14(6): 1522-9. DOI: 10.1109/JSTQE.2008.923291.
  22. Bykov DA, Doskolovich LL. Controlling the surface plasmon excitation efficiency using dielectric magneto-optical cavity. Journal of Optics 2014; 16(8): 085001. DOI: 10.1088/2040-8978/16/8/085001.
  23. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 2010; 181: 687-702. DOI:10.1016/j.cpc.2009.11.008.
  24. Zvezdin AK, Kotov VA. Modern Magnetooptics and Magnetooptical Materials. Bristol and Philadelphia: IOP Publishing; 1997. ISBN: 978-0-7503-0362-0
  25. Rosenkrantz de Lasson J, Kristensen PT, Mørk J, Gregersen N. A Bloch mode expansion approach for analyzing quasi-normal modes in open nanophotonic structures. META’14: The 5th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Book of Abstracts Sharjah, United Arab Emirates, 2014 May 20-23: 645-647.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20