Monitoring a spatial intensity distribution of transmitted and reflected light in a  diffractive structure
D.A. Belousov, A.G. Poleshchuk, V.N. Khomutov

 

Institute of Automation & Electrometry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Full text of article: Russian language.

 PDF

Abstract:
We propose a method and a design of a device for an on-line monitoring of a spatial intensity distribution of transmitted and reflected diffraction orders found within a ±80° solid angle and a 360° azimuthal angle. The proposed device is intended to serve as a shape and depth profiler of the diffractive element microrelief in the course of manufacturing.

Keywords:
diffractive optics, computer optics, diffractive optical elements (DOEs), synthesized holograms, measuring system.

Citation:
Belousov DA, Poleshchuk AG, Khomutov VN. Monitoring a spatial distribution of transmitted and reflected light in a diffractive structure. Computer Optics 2015; 39(5): 678-87. – DOI: 10.18287/0134-2452-2015-39-5-678-687.

References:

  1. Soifer VA, Kotlyar VV, Kazanskiy NL, Doskolovich LL, Kharitonov SI, Khonina SN, Pavelyev VS, Skidanov RV, Volkov AV, Golovashkin DL, Solovyev VS, Usplenyev GV. Methods for computer design of diffractive optical elements. Ed by Soifer VA. New York: John Wiley & Sons, Inc; 2002.
  2. Volkov AV. Control of parameters of a micro relief of DOE with use of test diffraction structures [in Russian]. Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 2001; 12: 179-84.
  3. Golub MA. Optical performance evaluation from micro relief profile scans of diffractive optical elements. International meeting: Diffractive Optics and Micro-Optics, DOMO 2000; 1: 110-2.
  4. Kirjanov VP, Nikitin VG. Measurement of efficiency of diffraction optical elements by a scanning method [in Russian]. Autometry 2004; 40(5): 82-93.
  5. Belousov DA, Poleshchuk AG. The device for diffraction efficiency measurement in the high dynamic range [in Russian]. Proceedings of the Scientific Conference of Young Scientists: Science. Technology. Innovation. Novosibirsk: “NSTU” Publisher 2014; 1: 15-9
  6. Kotlyar VV, Khonina SN, Soyfer VA, Jang J. Measurement of the orbital angular moment of a light field by means of a diffraction optical element [in Russian]. Autometry 2002; 38(3): 33-44.
  7. Cai W, Zhou P, Zhao C, Burge JH. Diffractive optics calibrator measurement of etching variations for binary computer-generated holograms. Applied Optics 2014; 53: 2477-86.
  8. Khomutov VN, Poleshchuk AG, Cherkashin VV. Measurement of diffraction efficiency of DOE in many diffractive orders [in Russian]. Computer Optics 2011; 35: 196-201.
  9. Born M, Volf E. Principles of optics. New York: Pergamon press. Publishers; 1968.
  10. Poleshchuk AG, Korolkov VP, Nasyrov R.K. Diffractive optical elements for controlling the parameters of the laser and precision control the shape of aspheric surfaces. Interexpo GEO-Siberia-2015. XI International Scientific Congress and Exhibition (Novosibirsk, April 20-22, 2014): International scientific conference "SibOptika-2015": material collection in 5 volumes. Novosibirsk 2015; 2(2): 232-8.
  11. Abrosimov SA, Vysogorets MV, Malyutin AA, Nenashev AV, Serov RV. Surface roughness meter for the range 1-25 nm based on the scattered-light indicatrix. Quantum electron 1994; 24(1): 75-7. DOI: 10.1070/QE1994v024n01ABEH000006.
  12. Baryshnikov NV, Denisov DG, Zhivotovsky IV, Caplin AYu. Analysis of methods for measuring surface roughness and experimental study of the diffuse scattering based on the reflectometry method. Youth Science and Technology Gazette. Moscow: Bauman MSTU Press; 2012; 1: 30-41.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20