A four-zone reflective azimuthal micropolarizer
S.S. Stafeev, A.G. Nalimov, M.V. Kotlyar, L. O’Faolain

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia,

School of Physics and Astronomy of the University of St. Andrews, Scotland

Full text of article: Russian language.

 PDF

Abstract:
In this paper, we have designed and fabricated a four-zone binary subwavelength reflective micropolarizer. The 100×100-µm micropolarizer grating was synthesized by electron-beam lithography. FDTD-based numerical simulation and experimental characterization have shown the micropolarizer to be capable of transforming a linearly polarized incident Gaussian beam of wavelength 532 nm into an azimuthally polarized beam.

Keywords:
polarization, diffraction gratings, subwavelength structures.

Citation:
Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-15. DOI: 10.18287/0134-2452-2015-39-5-709-715.

References:

  1. Kotlyar VV, Zalyalov OK. Design of diffractive optical elements modulating polarization. Optik 1996; 103(3): 125-30.
  2. Bomzon Z, Kleiner V, Hasman E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters 2001; 26(18): 1424-6. doi: 10.1364/OL.26.001424.
    Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Optics Letters 2002; 27(5): 285-7. doi: 10.1364/OL.27.000285.
  3. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Optics Letters 2008; 33(23): 2782-4. doi: 10.1364/OL.33.002782.
  4. Kämpfe T, Sixt P, Renaud D, Lagrange A, Perrin F, Parriaux O. Segmented subwavelength silicon gratings manufactured by high productivity microelectronic technologies for linear to radial/azimuthal polarization conversion. Optical Engineering 2014; 53(10): 107105. doi:10.1117/1.OE.53.10.107105.
  5. Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M. Concentric ring metal grating for generating radially polarized light. Applied Optics 2011; 50(16): 2451-7. doi:10.1364/AO.50.002451.
  6. Nalimov AG, O'Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-36.
  7. Stafeev S, O’Faolain L, Kotlyar V, Nalimov A. Tight focus of light using micropolarizer and microlens. Applied Optics 2015; 54(14): 4388-94. DOI: 10.1364/AO.54.004388.
  8. Helseth LE. Optical vortices in focal regions. Optics Communications 2004; 229: 85-91. doi:10.1016/j.optcom.2003.10.043.
  9. Zhang Z, Pu J, Wang X. Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal. Applied Optics 2008; 47(12): 1963-7. doi: 10.1364/AO.47.001963.
  10. Kotlyar VV, Kovalev AA Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. Journal of the Optical Society of America A 2010; 27(3): 372-80. DOI: 10.1364/JOSAA.27.000372.
  11. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Optics Letters 2010; 35(23): 3928-30. doi: 10.1364/OL.35.003928.
  12. Wang S, Li X, Zhou J, Gu M. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics. Optics Letters 2014; 39(17): 5022-5. doi: 10.1364/OL.39.005022.
  13. Nie Z, Ding W, Li D, Zhang X, Wang Y, Song Y. Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams. Optics Express 2015; 23(2): 690-701. doi: 10.1364/OE.23.000690.
  14. Chen Z, Zhao D. 4Pi focusing of spatially modulated radially polarized vortex beams. Optics Letters 2012; 37(8): 1286-8. doi: 10.1364/OL.37.001286.
  15. Li X, Venugopalan P, Ren H, Hong M, Gu M. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam. Optics Letters 2014; 39(20): 5961-4. doi: 10.1364/OL.39.005961.
  16. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Physical Review Letters 2003; 91: 233901.
  17. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20