On a problem of numerical sectioning in ophthalmology
A.V. Razgulin, N.G. Iroshnikov, A.V. Larichev, S.D. Pavlov, T.E. Romanenko

 

Lomonosov Moscow State University, Computational Mathematics and Cybernetics Faculty, Moscow, Russia,
Lomonosov Moscow State University, Physics Faculty, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
We consider a problem of eye-fundus image reconstruction from different-depth fundus sections based on an image stack, with the images obtained via imaging system's fast refocusing as superposition of 3D object sections and blurred images of adjacent-depth sections. An implicit iterative regularization method in the Fourier plane is used for 3D deconvolution. The results of mathematical modeling have demonstrated that the numerical sectioning shows promise when processing ophthalmological images distorted by various types of noise.

Keywords:
sectioning, 3D deconvolution, convolution, fundus, iterative regularization method.

Citation:
Razgulin AV, Iroshnikov NG, Larichev AV, Pavlov SD, Romanenko TE. On a problem of numerical sectioning in ophthalmology. Computer Optics 2015; 39(5): 777-86. DOI: 10.18287/0134-2452-2015-39-5- 777-786.

References:

  1. Diabetes in America. 2nd ed. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 1995.
  2. Bursell SE, Cavallerano JD, Cavallerano AA, Clermont AC, Birkmire-Peters D, Aiello LP, Aiello LM. Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy. Ophthalmology 2001; 108(3): 572-5. DOI:10.1016/S0161-6420(00)00604-7.
  3. Buabbud J, Al-latayfeh M, Sun J. Optical coherence tomography imaging for diabetic retinopathy and macular edema. Current Diabetes Reports 2010; 10(4): 264-9. DOI: 10.1007/s11892-010-0129-z.
  4. Braaf B, Vienola KV, Sheehy CK, Yang Q, Vermeer KA, Tiruveedhula P, Arathorn DW, Roorda A, de Boer JF. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomedical Optics Express 2013; 4(1): 51-65. DOI: 10.1364/BOE.4.000051.
  5. Larichev AV, Ivanov PV, Iroshnikov NG, Shmalhauzen VI, Otten LJ. Adaptive system for eye-fundus imaging. Quantum Electron [In Russian]. 2002; 32: 902-8.
  6. Agard D. Optical sectioning microscopy: cellular architecture in three dimensions. Ann. Rev. Biophys. Bioeng. 1984; 13: 191-219. DOI: 10.1146/annurev.bb.13.060184.001203.
  7. Castleman K. Digital Image Processing. Pearson Education; 2007.
  8. Wu Q, Merchant F, Castleman K. Microscope image processing. Academic Press; 2008.
  9. Matvienko AN, Novikova TN. The translucent stratified media image processing method [In Russian]. Vestnik Moskovskogo Universiteta. Seriya 15. Vychislitel'naya Matematika i Kibernetika 1988; 4: 33-7.
  10. Bruce M, Butte M. Real-time GPU-based 3D deconvolution. Optics Express 2013; 21(4): 4766-73. DOI: 10.1364/OE.21.004766.
  11. Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G. Towards real-time image deconvolution: application to confocal and STED microscopy. Scientific Reports 2013; 3(2523). DOI:10.1038/srep02523.
  12. Bakushinskiy AB, Goncharskiy AV. Iterative methods of solving ill-posed problems [In Russian]. Moscow: “Nauka” Publisher; 1989.
  13. Denisov AM. Introduction to the inverse problems theory [In Russian]. Moscow: Publisher of Moscow University; 1994.
  14. Tikhonov AN, Arsenin VY. Ill-posed problems solving methods [in Russian]. Moscow: “Nauka” Publisher; 1986.
  15. Ilyasova NYu. Methods for digital analysis of human vascular system. Literature review. Computer Optics 2013; 37(4) 511-35.
  16. Iroshnikov N, Larichev A, Razgulin A, Starostin A. A modified bispectral image reconstruction method in ophthalmology. Computational Mathematics and Modeling 2015; 26(4): 534-45. DOI: 10.1007/s10598-015-9290-1.
  17. Krylov AS, Nasonov AV, Semashko AS, Chernomorets AA, Sergeev VV,. Akopyan VS, Rodin AS, Semenova NS. Computer analysis of fundus images [In Russian]. SPb: Proceedings of the VIII Russian-Bavarian conference on biomedical engineering; 2012: 129-33.
  18. Nasonova AA, Krylov AS. Allocation of blood vessels on the fundus image and its quality evaluation [In Russian]. Biotekhnosphera 2014; 2: 24-5.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20