Application of fuzzy neural networks for defining crystal lattice types in nanoscale images
O.P. Soldatova, I.A. Lyozin, I.V. Lyozina, A.V. Kupriyanov, D.V. Kirsh

 

Samara State Aerospace University, Samara, Russia,

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
The article proposes the application of neural fuzzy networks for defining the overlapping classes of crystal lattices. We discuss the following neural fuzzy networks: Takagi-Sugeno-Kung network and a modification of Wang-Mendel neural fuzzy network proposed by the authors. A three-step scheme of neural network training is proposed. The results prove the efficiency of the proposed approach for the determination of crystal lattice types.

Keywords:
pattern recognition, nanoscale images, nanostructures, crystal lattice, neural fuzzy networks, Takagi-Sugeno-Kung network, Wang-Mendel network.

Citation:
Soldatova OP, Lyozin IA, Lyozina IV, Kupriyanov AV, Kirsh DV. Application of fuzzy neural networks for defining crystal lattice types in nanoscale images. Computer Optics: 2015; 39(5): 787-94. DOI: 10.18287/0134-2452-2015-39-5-787-94.

References:

  1. Tilley R. Crystals and crystal structure. West Sussex: John Wiley & Sons Ltd; 2006.
  2. Kessler EG, Henis A, Deslattes RD, Nielsen L, Arif M. Precision comparison of the lattice parameters of silicon monocrystals. Journal of research of the national institute of standards and technology 1994; 99(1): 1-18.
  3. Smith WF. Foundations of Materials Science and Engineering. NY: McGraw-Hill; 2004.
  4. Patera J, Skala V. Centered cubic lattice method comparison. Proceedings of algoritmy 2005; 309-19.
  5. Hammond C. The basic of crystallography and diffraction, 3rd ed. Oxford University Press, 2009.
  6. Soifer VA, Kupriyanov AV. Analysis and recognition of the nanoscale images: conventional approach and novel problem statement [In Russian]. Computer Optics 2011; 35(2): 136-44.
  7. Kirsh DV, Kupriyanov AV. Crystal lattice identification by coordinates of their nodes in three dimensional space. Pattern recognition and image analysis 2015; 25(3): 456-60.
  8. Kupriyanov AV, Kirsh DV. Estimating the similarity measure of crystal lattices by coordinates of their nodes in three-dimensional space. Computer Optics 2012; 36(4): 590-95.
  9. Kupriyanov AV. Texture analysis and identification of the crystal lattice type Upon the nanoscale images [In Russian]. Computer Optics 2011; 35(2): 151-7.
  10. Lyozina IV, Krasnov AE. Researching the multi-layer perceptron identification abilities [In Russian]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 2014; 16-4(2): 340-3.
  11. Lyozin IA, Markelov DE. Automated classification system of design and technological elements by using knowledge bases [In Russian]. Chief mechanical engineer 2014; 5: 38-41.
  12. Soldatova OP. Multifunctional neural network simulator [In Russian]. Programming products and systems 2012; 3: 27-31.
  13. Soldatova OP, Danilenko AN. Solving the classification problem in management decisions in a blurred source data by using the hybrid neural fuzzy classifier [In Russian]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 2014; 16-4(2): 350-8.
  14. Soldatova OP, Pudikova EM. Classifying the system errors by using the hybrid versions of the Wang-Mendel’s neural network [In Russian]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 2014; 16-4(2): 359-66.
  15. Vineetha S, Bhat CCS, Idicula SM. MicroRNA-mRNA interaction network using TSK-type recurrent neural fuzzy network. Gene 2013; 515(2): 385-90.
  16. Kiper AV, Stankevich TS. Designing of fuzzy classifier based on fuzzy system Sugeno for definition of the fire rank of the territory of seaport [In Russian]. Bulletin of the Astrakhan State Technical University. Series “Marine engineering and technology” 2012; 2: 18-25.
  17. Katasev AS. Mathematical and software for fuzzy-productions knowledge bases generation of the expert diagnostic systems [In Russian]. Basic Research 2013; 10(9): 1922-7.
  18. Osowski S. Sieci neuronowe do przetwarzania informacji.– Oficyna Wydawnicza Politechniki Warszawskiej [In Polish]. Warszava; 2000.
  19. Rutkowska D, Pilinski M, Rutkowski L. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. [In Polish]. Warszava: “Wydawnictwo Naukowe PWN” Publisher; 1999.
  20. Novak V, Perfilieva I, Mockor J. Mathematical principles of fuzzy logic. Kluwer International Series in Engineering and Computer Science volume 1999; 517.
  21. Soldatova OP, Lyozin IA. Solving the classification problem by using neural fuzzy production based network models of Mamdani-Zadeh [In Russian]. Bulletin of the Samara State Technical University. A series of physical and mathematical sciences 2014; 35(2): 136-48.
  22. Shirokanev AS, Kirsh DV, Kupriyanov AV. Researching methods of reconstruction of three-dimensional crystal lattice from images of projections. CEUR Workshop Proceedings 2015; 1490: 290-7.
  23. Kirsh DV, Kupriyanov AV. Modeling and Identification of Centered Crystal Lattices in Three-Dimensional Space. CEUR Workshop Proceedings 2015; 1490: 162-70.
  24. Kupriyanov AV, Kirsh DV. Estimation of the Crystal Lattice Similarity Measure by Three-Dimensional Coordinates of Lattice Nodes. Optical Memory & Neural Networks (Information Optics) 2015; 24(2): 145-51.
  25. Kirsh DV, Kupriyanov AV. Identification of Three-Dimensional Crystal Lattices by Estimation of Their Unit Cell Parameters. Supplementary Proceedings of the 4th International Conference on Analysis of Images, Social Networks and Texts (AIST'2015) 2015; 40-5.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20