Suppression of spatio-temporal instabilities in broad-area class-B lasers
D.A. Anchikov, A.A. Krents, N.E. Molevich, A.V. Pakhomov

 

Samara State Aerospace University, Samara, Russia
Lebedev Physical Institute, Russian Academy of Sciences, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this paper we investigated the spatio-temporal instabilities of stationary lasing in broad-area class-B lasers. Conditions for the onset of filamentary instability and its spatio-temporal characteristics were obtained analytically. The lasing stabilization capabilities through varying laser parameters were considered. We have also shown that effective suppression of unstable field components may be achieved by external optical injection into the cavity.

Keywords:
broad-area laser, filamentation, optical injection, instabilities and chaos, laser stabilization.

Citation:
Anchikov DA, Krents AA, Molevich NE, Pakhomov AV. Suppression of spatio-temporal instabilities in broad-area class-B lasers. Computer Optics 2016; 40(1): 31-35. DOI: 10.18287/2412-6179-2016-40-1-31-35.

References:

  1. Fischer I, Hess O, Elsäßer W, Gobel E. Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhysics Letters 1996; 35(8): 579-584.
  2. Otsuka K, Chu S. Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Optics Letters 2009; 34(1): 10-12.
  3. Babushkin IV, Loiko NA, Ackermann T. Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers. Physical Review E 2004; 69(6): 066205.
  4. Gensty T, Becker K, Fischer I, Elsäßer W, Degen C, Debernardi P, Bava GP. Wave chaos in real-world vertical-cavity surface-emitting lasers. Physical Review Letters 2005; 94: 233901.
  5. Lugiato LA, Oppo G-L, Tredicce JR, Narducci LM, Pernigo MA. Instabilities and spatial complexity in a laser. Journal of the Optical Society of America B 1990; 7(6): 1019-1033.
  6. Khanin YaI. Fundamentals of laser dynamics. Cambridge: International Science Publishing; 2006.
  7. Jacobsen PK, Moloney JV, Newell AC, Indik R. Space-time dynamics of wide-gain-section lasers. Physical Review A 1992; 45(11): 8129-8137.
  8. Zaikin AP, Kurguzkin AA, Molevich NE. Periodic self-wave structures in a wide-aperture laser with frequency detuning. II. Distributed model. Quantum Electron 1999; 29(6): 526-529.
  9. Zaikin AP, Molevich NE. Effect of the cross-relaxation rate on the transverse radiation dynamics of a wide-aperture laser. Quantum Electron 2004; 34(8): 731-735.
  10. Krents AA, Molevich NE.  Spatio-temporal dynamics of the cross section profile of the optical field in the laser with frequency detuning. Computer Optics 2010; 34(4): 525-530.
  11. Anchikov DA, Krents AA, Molevich NE, Pakhomov AV. Spatio-temporal instabilities in large aperture lasers. Computer Optics 2014; 38(4): 681-685.
  12. Wieczorek S, Krauskopf B, Simpson TB, Lenstra D. The dynamical complexity of optically injected semiconductor lasers. Physics Reports 2005; 416: 1-128.
  13. Rebrova N, Habruseva T, Huyet G, Hegarty S. Stabilization of a passively mode-locked laser by continuous wave optical injection. Applied Physics Letters 2010; 97: 101105.
  14. Habruseva T, Huyet G, Hegarty S. Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE Journal of Selected Topics in Quantum Electronics 2011; 17(5): 1272-1279.
  15. Drzewietzki L, Breuer S, Elsäßer W. Timing jitter reduction of passively mode-locked semiconductor lasers by self- and external-injection: Numerical description and experiments. Optics Express 2013; 21: 16142-16161.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20