Injectional multilens molding parameters  optimization
    N.L. Kazanskiy, I.S. Stepanenko, A.I.  Khaimovich, S.V. Kravchenko, E.V. Byzov, M.A. Moiseev
   
  Samara State Aerospace University, Samara,  Russia,
    Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia
Full text of article: Russian language.
 PDF
  PDF
Abstract:
A technique for  controlling and optimizing injection molding parameters by numerical simulation  is proposed. Using this method for an optical element designed for roadway  lighting, multilens molding quality criteria have been defined. Optimal  parameters for lens manufacturing have been determined. Based on these  parameters, a polycarbonate multilens has been made with an absolute tolerance  equal to 0.01 mm. 
Keywords:
injection  molding, optical element, intensity distribution, free-form surface, Taguchi’s  method.
Citation:
Kazanskiy NL, Stepanenko  IS, Khaimovich AI, Kravchenko SV, Byzov EV, Moiseev MA. Injectional  multilens molding parameters optimization. Computer Optics 2016; 40(2): 203-214. DOI: 10.18287/2412-6179-2016-40-2-203-214.
References:
  - Taguchi G, Clausing D. Robust  quality. Harvard Business Review 1990; 68(1): 65-75.
- Thanh HV, Chen CCA, Kuo CH. Injection Molding  of PC/PMMA Blend for Fabricate of the Secondary Optical Elements of LED  Illumination. Advanced Materials Research 2012; 579: 134-141.
- Jaworski M, Bakharev A, Costa F, Fried C. Applying  simulation to optimize plastic molded optical parts. Proc SPIE 2012; 8489:  848906.
- Chen C-P, Chuang M-T, Hsiao Y-H,  Yang Y-K, Tsai C-H. Simulation and experimental study in determining injection  molding process parameters for thin-shell plastic parts via design of  experiments analysis. Expert Systems with Applications 2009; 36(7):  10752-10759.
- Kravchenko SV, Moiseev MA, Doskolovich LL. Design of  refractive optical elements with two free-form surfaces for generation of  prescribed illuminance distribution. Computer Optics 2014; 38(3): 435-442.
- Winston  R, Miñano JC, Benítez P. Nonimaging Optics. Elsevier Academic Press; 2005. 
- Moiseev MA, Doskolovich LL, Borisova KV, Byzov EV.  Fast and robust technique for design of axisymmetric TIR optics in case of an  extended light source. J Mod Opt 2013; 60(14): 1100-1106.
- Chen H-C, Lin J-Y, Chiu H-Y. Rectangular illumination  using a secondary optics with cylindrical lens for LED street light. Opt Express 2013;  21(3): 3201-3212.
- Kravchenko SV, Moiseev MA, Doskolovich LL, Kazanskiy  NL. Design of axis-symmetrical optical element with two aspherical surfaces for  generation of prescribed irradiance distribution. Computer Optics 2011; 35(4):  467-472.
- Elmer WB. Optical design of reflectors. App  Opt 1978; 17(7): 977-979.
- Lin KCh.  Weighted least-square design of freeform lens for multiple point sources. Opt  Eng 2012; 51(4): 043002.
- Benitez P,  Minano JC, Blen J, Mohedano R, Chaves J, Dross O, Hernandez M, Falicoff W.  Simultaneous multiple surface optical design method in three dimensions. Opt Eng 2004; 43(7): 1489-1502.
- Bruneton A,  Bäuerle A, Wester R, Stollenwerk J, Loosen P. High resolution irradiance  tailoring using multiple freeform surfaces. Opt Express 2013; 21(9): 10563-10571.
- Ma Y, Zhang  H, Su Z, He Y, Xu L, Li H. Hybrid method of free-form lens design for arbitrary  illumination target. App Opt 2015; 54(14):  4503-4508. 
- Kravchenko  SV, Byzov EV, Moiseev MA, Doskolovich LL. Design of optical elements with two  refractive surfaces to generate a prescribed intensity distribution. Computer  Optics 2015; 39(4): 508-514. DOI: 10.18287/0134-2452-2015-39-4-508-514.
- Doskolovich LL, Moiseev MA, Bezus  EA, Oliker V. On the use of the supporting quadric method in the problem of the  light field eikonal calculation. Opt Express 2015; 23(15): 19605-19617.
- Michaelis D, Schreiber P, Bräuer A.  Cartesian oval representation of freeform optics in illumination systems. Opt  Lett 2011; 36(6): 918-920. 
- Oliker V, Rubinstein J, Wolansky G. Supporting  quadric method in optical design of freeform lenses for illumination control of  a collimated light. Adv  Appl Math 2015; 62: 160-183.
- Doskolovich LL, Moiseev MA,  Kazanskiy NL. On using a supporting quadric method to design diffractive  optical elements. Computer Optics 2015; 39(3): 339-346.
-   Born M, Wolf E. Principles of optics. Cambridge: Cambridge   University Press, 2003.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20