Characterization of the surface relief of film diffractive optical elements
T.P. Kaminskaya, V.V. Popov, A.M. Saletsky

 

Lomonosov Moscow State University, Moscow, Russia

Full text of article: Russian language.

 PDF

Abstract:
The surface relief of film reflective diffractive optical elements (DOE) has been characterized by atomic force microscopy. The elements under study were fabricated using a variety of microfabrication techniques: traditional laser recoding of reflection rainbow holograms, Dot matrix and Kinemax technologies, and e-beam lithography. The influence of these technologies on the relief characteristics has been estimated. It has been shown that the choice of such technologies is defined by the necessity to obtain corresponding optical characteristics of diffractive optical elements.

Keywords:
diffractive optical elements, atomic force microscope, diffraction efficiency, surface-relief parameters.

Citation:
Kaminskaya TP, Popov VV, Saletsky AM. Characterization of the surface relief of film diffractive optical elements. Computer Optics. 2016; 40(2): 215-224. DOI: 10.18287/2412-6179-2016-40-2-215-2244.

References:

  1. Khomutov VN, Poleshchuk AG, Cherkashin VV. Measurement of diffraction efficiency of DOE in many diffractive orders. Computer Optics 2011; 35(2): 196-202.
  2. Belousov DA, Poleshchuk AG, Khomutov VN. Monitoring a spatial intensity distribution of transmitted and reflected light in a diffractive structure. Computer Optics 2015; 39(5): 678-686. DOI: 10.18287/0134-2452-2015-39-5-678-686.
  3. Kolyuchkin VV, Zlokazov EYu, Odinokov SB, Talalaev VYe, Tsyganov IK. A coherent measurement method for checking the surface microrelief depth in holographic and diffractive optical elements. Computer Optics 2015; 39(4): 515-520. DOI: 10.18287/0134-2452-2015-39-4-515-520.
  4. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on the convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217.
  5. Collier RJ, Burckhardt CB, Lin LH. Optical Holography. New York: Academic Press; 1971: 170-174.
  6. Loewen EG, Popov E. Diffraction gratings and applications. New York: Taylor and Francis Group; 1997.
  7. Novikova T, De Martino A, Bulkin P, Nguyen Q, Drévillon B, Popov V, Cumakov A. Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction. Optics Express 2007; 15(5): 2033-2046.
  8. Nakahara S, Fujita T. Surface properties of holograms studied by atomic force microscopy. Proceedings of SPIE 1995; 2333: 49-52.
  9. Leech PW, Sexton BA, Marnock RJ. Scanning probe microscope analysis of microstructures in optically variable devices. Microelectronic Engineering 2002; 60: 339-346.
  10. Savic Ševic S, Pantelic D. Biopolymer holographic diffraction gratings. Optical Materials 2008; 30(7): 1205-1207.
  11. Leech PW, Lee RA, Davis TJ. Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer. Microelectronic Engineering 2006; 83: 1961-1965.
  12. Savic Ševic S, Pantelic D. Relief hologram replication using a dental composite as an embossing too. Optics Express 2005; 13(7): 2747-2754.
  13. Picot O., Alcala R, Sanchez C, Dai M, Hughes-Brittain NF, Broer DJ, Peijs T, Bastiaansen CWM. Manufacturing of surface relief structures in moving substrates using photoembossing and pulsed-interference holography. Macromolecular Materials and Engineering 2013; 298(1): 33-37. DOI: 10.1002/mame.201100433.
  14. Tamulevicius S, Guobiene A, Janusas G, Palevicius A, Ostasevicius V, Andrulevicius M. Optical characterization of diffractive optical elements replicated in polymer. Journal of Micro/Nanolithography, MEMS, and MOEMS 2006; 5(1): 013004.
  15. Zhurminsky I, Hauser R. Effect of replication on the groove shape of a sinusoidal holographic grating. Optical Engineering 2007; 46(6): 063003.
  16. Sexton BA, Marnock RJ. Characterization of high resolution resists and metal shims by scanning probe microscopy. Microsc Microanal 2000; 6(2): 129-136. DOI: 10.1007/s100059910012.
  17. Gale MT. Replication technology for micro-optics and optical microsystems. Proceedings of SPIE 2003; 5177: 113-120.
  18. Lu YT, Chi S. Compact, reliable a symmetric optical configuration for cost-effective fabrication of multiplex dot matrix hologram in anti-counterfeiting application. Optik 2003; 114(4): 161-167.
  19. Van Renesse RL. Security aspects of commercially available dot matrix and image matrix origination systems. SPIE International Conference on Optical Holography and Applications, 24-27 May 2004, Kiev, Ukraine.
  20. Kley E-B. Continuous profile writing by electron and optical lithography. Microelectronic Engineering 1997; 34(3-4): 261-298.
  21. Palevicius A, Janušas G, Narijauskaite B, Palevicius R. Microstructure formation on the basis of computer generated hologram. Mechanika 2011; 17(3): 334-337.
  22. Girnyk VI, Kostyukevych SO, Shepeliavyi PYe, Kononov AV, Borisov IS. Multilevel computer-generated holograms for reconstructing 3D-images in combined optical-digital security devices. Semiconductor Physics, Quantum Electronics & Optoelectronics 2002; 5(1): 106-114.
  23. Dubonos SV, Gaifullin BN, Raith H, Svintsov AA, Zaitsev SI. Proximity correction for 3D-structures. Microelectronic Engineering 1995; 27: 195-198.
  24. Aristov VV, Dubonos SV, Dyachenko RYa, Gaifullin BN, Matveev VN, Raith H, Svintsov AA, Zaitsev SI. Three-dimension design in electron beam lithography. J Vac Sci Technol 1995; 13(6): 2526-2528.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20