Spatial selectivity of the four-wave radiation converter in a transparent two-component medium in a scheme with concurrent pump waves
V.V. Ivakhnik, M.V. Savelyev

 

Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
Spatial characteristics of the degenerate four-wave radiation converter in a liquid containing nanoparticles were studied using a scheme with concurrent pump waves. The phase matching condition was shown to determine the general form of the spatial spectrum amplitude of the object wave, with the electrostriction phenomenon and Dufour effect shown to cause the emergence of dips in the spatial spectrum amplitude, with the dip positions corresponding to the propagation directions of the pump waves. The relationship between characteristics of the dips and the pump wave parameters were obtained.

Keywords:
spatial selectivity, four-wave radiation converter, transparent two-component medium.

Citation:
Ivakhnik VV, Savelyev MV. Spatial selectivity of the four-wave radiation converter in a transparent two-component medium in a scheme with concurrent pump waves. Computer Optics 2016; 40(3): 322-330. DOI: 10.18287/2412-6179-2016-40-3-322-330.

References:

  1. Zel’dovich BYa, Pilipetsky NF, Shkunov VV. Principles of phase conjugation. New York: Springer-Verlag Berlin Heidelberg; 1985. DOI: 10.1007/978-3-540-38959-0.
  2. Dmitriev VG. Nonlinear optics and phase conjugation [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  3. Voronin ÉS, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 8(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  4. Hellwarth RW. Optical beam phase conjugation four-wave mixing in a waveguide. Opt Eng 1982; 21(2): 263-265.
  5. Ma X, Yang L, Guo X, Li X. Generation of photon pairs in dispersion shift fiber through spontaneous four wave mixing: Influence of self-phase modulation. Opt Commun 2011; 284(19): 4558-4562. DOI: 10.1016/j.optcom.2011.06.011.
  6. Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M, Gaeta AL. Optical time lens based on four-wave mixing on a silicon chip. Opt Lett 2008; 33(10): 1047-1049. DOI: 10.1364/OL.33.001047.
  7. Scheulin AA, Angervaks AE, Ryskin AI. Holographic media based on crystals with fluorite structure with color centers [In Russian]. Saint-Petersburg: SPbSU ITMO Publisher; 2009.
  8. Ivakhnik VV, Martasova ÉG, Nikonov VI. Quality of phase conjugation (PC) with prosperous four-photon interaction [In Russian]. Opt Spectrosc 1991; 70(1): 118-122.
  9. Ivakhnik VV, Nikonov VI, Kharskaya TG. Analysis of spatial characteristics of the four-wave radiation converter on thermal nonlinearity in a scheme with concurrent pump waves [In Russian]. Computer Optics 2006; 30: 4-8.
  10. Akimov AA, Ivakhnik VV, Nikonov VI. Four-wave interaction on resonance and thermal nonlinearities in a scheme with concurrent pump waves for high conversion coefficients. Radiophys Quantum Electron 2015; 57(8): 672-679. DOI: 10.1007/s11141-015-9553-x.
  11. Livashvili AI, Kostina GV, Yakunina MI. Temperature dynamics of a transparent nanoliquid acted on by a periodic light field. J Opt Tech 2013; 80(2): 124-126. DOI: 10.1364/JOT.80.000124.
  12. Rusconi R, Isa L, Piazza R. Thermal-lensing measurement of particle thermophoresis in aqueous dispersion. J Opt Soc Am B 2004; 21(3): 605-616. DOI: 10.1364/JOSAB.21.000605.
  13. Mahilny UV, Marmysh DN, Stankevich AI, Tolstik AL, Matusevich V, Kowarschik R. Holographic volume gratings in a glass-like polymer materials. Appl Phys B 2006; 82(2): 299-302. DOI: 10.1007/s00340-005-2006-z.
  14. Afans’ev AA, Rubinov AN, Miknevich SYu, Ermolaev IE. Four-wave mixing in a liquid suspension of transparent dielectric microspheres. JETP 2005; 101(3): 389-400.
  15. Lopez-Mariscal C, Gutierrez-Vega JC, McGloin D, Dholakia K. Direct detection of optical phase conjugation in a colloidal medium. Opt Express 2007; 15(10): 6330-6335. DOI: 10.1364/OE.15.006330.
  16. El-Ganainy R, Christodoulides DN, Rotschild C, Segev M. Soliton dynamics and self-induced transparency in nonlinear nanosuspensions. Opt Express 2007; 15(16): 10207-10218. DOI: 10.1364/OE.15.010207.
  17. Ivakhnik VV, Savelyev MV. Four-wave mixing in a transparent medium based on electrostriction and Dufour effect at large reflectance. Phys Procedia 2015; 73: 26-32. DOI: 10.1016/j.phpro.2015.09.117.
  18. Ivakhnik VV, Savelyev MV. The influence of the reflection coefficient on the spatial selectivity of a four-wave radiation converter in a transparent medium based on electrostriction and Dufour effect. Computer Optics 2015; 39(2): 197-203.
  19. Ivakhnik VV, Savelyev MV. Spatial and temporal characteristics of a nondegenerate four-wave radiation converter in a transparent medium based on electrostriction and Dufour effect. Computer Optics 2015; 39(4): 486-491. DOI: 10.18287/0134-2452-2015-39-4-486-491.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20