On optical surface reconstruction from a prescribed source-target mapping
L.L. Doskolovich, E.S. Andreev, M.A. Moiseev

 

Image Processing Systems Institute оf RAS,– Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
A new optical surface reconstruction technique in the source-target mapping method is proposed. The technique is based on the representation of the surface as an envelope of a parametric family of paraboloids (ellipsoids). Using such a representation, the calculation of the optical surface is reduced to solving a complete differential equation without regard for the coordinate system. By way of illustration, mirrors that generate uniform intensity distributions in a square region are designed. Simulation of the design examples shows high performance of the proposed technique: it allows us to obtain good-quality intensity distributions even with violation of the integrability condition.

Keywords:
geometrical optics, source-target map, surface reconstruction, mirror, intensity distribution.

Citation:
Doskolovich LL, Andreev ES, Moiseev MA. On optical surface reconstruction from a prescribed source-target mapping. Computer Optics 2016; 40(3): 338-345. DOI: 10.18287/2412-6179-2016-40-3-338-345.

References:

  1. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation. Optics Letters 2013; 38(2): 229-231. DOI: 10.1364/OL.38.000229.
  2. Wu R, Benítez P, Zhang Y, Miñano JC. Influence of the characteristics of a light source and target on the Monge–Ampére equation method in freeform optics design. Optics Letters 2014; 39(3): 634-637. DOI: 10.1364/OL.39.000634.
  3. Elmer WB, Cooke F. Optical design of reflectors. Part 2. Applied Optics 1978; 17(7): 977-979. DOI: 10.1364/AO.17.000977.
  4. Moiseev MA, Doskolovich LL. Design of TIR optics generating the prescribed irradiance distribution in the circle region. JOSA A 2012; 29(9): 1758-1763. DOI: 10.1364/JOSAA.29.001758.
  5. Doskolovich LL, Kazanskiy NL, Kharitonov SI, Perlo P, Bernard S. Designing reflectors to generate a line-shaped directivity diagram. Journal of Modern Optics 2005; 52(11): 1529-1536. DOI: 10.1080/09500340500058082.
  6. Doskolovich LL, Kazanskiy NL, Bernard S. Designing a mirror to form a line-shaped directivity diagram. Journal of Modern Optics 2007; 54(4): 589-597. DOI: 10.1080/0950034060102186.
  7. Doskolovich LL, Dmitriev AYu, Moiseev MA, Kazanskiy NL. Analytical design of refractive optical elements generating one-parameter intensity distributions. JOSA A 2014; 31(11): 2538-2544. DOI: 10.1364/JOSAA.31.002538.
  8. Doskolovich LL, Dmitriev AY, Bezus EA, Moiseev MA. Analytical design of freeform optical elements generating an arbitrary-shape curve. Applied Optics 2013; 52(12): 2521-2526. DOI: 10.1364/AO.52.002521.
  9. Oliker VI. Mathematical aspects of design of beam shaping surfaces in geometrical optics. In Book: Kirkilionis M, Krömker S, Rannacher R, Tomi F (eds.). Trends in Nonlinear Analysis. Berlin, Heidelberg: Springer; 2003. DOI: 10.1007/978-3-662-05281-5_4.
  10. Michaelis D, Schreiber P, Bräuer A. Cartesian oval representation of freeform optics in illumination systems. Optics Letters 2011; 36(6): 918-920. DOI: 10.1364/OL.36.000918.
  11. Doskolovich LL, Borisova KV, Moiseev MA, Kazanskiy NL. Design of mirrors for generating prescribed continuous illuminance distributions on the basis of the supporting quadric method. Applied Optics 2016; 55(4): 687-695. DOI: 10.1364/AO.55.000687.
  12. Fournier FR, Cassarly WJ, Rolland JP. Fast freeform reflector generation using source-target maps. Optics Express 2010; 18(5): 5295-5304. DOI: 10.1364/OE.18.005295.
  13. Mao X, Li H, Han Y, Luo Y. Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape. Optics Express 2015; 23(4): 4313-4328. DOI: 10.1364/OE.23.004313.
  14. Hongtao L, Shichao C, Yanjun H, Yi L. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency. Optics Express 2013; 21(1): 1258-1269. DOI: 10.1364/OE.21.001258.
  15. Luo Y, Feng Z, Han Y, Li H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Optics Express 2010; 18(9): 9055-9063. DOI: 10.1364/OE.18.009055.
  16. Ding Y, Liu X, Zheng ZR, Gu PF. Freeform LED lens for uniform illumination. Optics Express 2008; 16(17): 12958-12966. DOI: 10.1364/OE.16.012958.
  17. Wang L, Qian K, Luo Y. Discontinuous free-form lens design for prescribed irradiance. Applied Optics 2007; 46(18): 3716-3723. DOI: 10.1364/AO.46.003716.
  18. Fournier FR, Cassarly WJ, Rolland JP. Freeform reflector design using integrable maps. Proc SPIE 2010; 7652: 765221. DOI: 10.1117/12.871014.
  19. Optical Design Software TracePro. Source: <http://www.lambdares.com>.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20