Method for estimating the uncertainty of the spatial mating of high-precision optical and mechanical parts
M.A. Bolotov, V.A. Pechenin, S.P.Murzin

 

Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
This paper presents a method for estimating the uncertainty of spatial mating of high-precision parts using optical measurements. The method is applicable in computer designing for optical and mechanical systems, taking into account the manufacturing uncertainties and relative position their elements. Another of its application can be to find the most acceptable method of assembly and adjustment of precision optical systems based on the results of measurements of the geometry of mating parts.  The method involves the analysis of parts geometry deviation on the results of the optical measurements; creating of geometric models for real surfaces of the parts, the calculation of relative spatial arrangement of parts in modeling their mates using the modernized of the iterative closest points algorithm (ICP).

Keywords:
uncertainty estimate, fabrication, assembly, tolerancing, alignment.

Citation:
Bolotov MA, Pechenin VA, Murzin SP. Method for estimating the uncertainty of the spatial mating of high-precision optical and mechanical parts. Computer Optics 2016; 40(3): 360-369. DOI: 10.18287/2412-6179-2016-40-3-360-369.

References:

  1. Kazanskiy NL, Stepanenko IS, Khaimovich AI, Kravchenko SV, Byzov EV, Moiseev MA. Injectional multilens molding parameters optimization. Computer Optics 2016; 40(2): 203-214. DOI: 10.18287/2412-6179-2016-40-2-203-214.
  2. Chekal' VN, Chudakov UI, Shevcov SE. The use of coordinate measuring machines for the automated optimization technology forming optical surfaces. Journal of Optical Technology 2008; 75(11): 755-759.
  3. Abulkhanov SR. Technologies of laser radiation focusators. Research Journal of Applied Sciences 2014; 9(11): 834-842. DOI: 10.3923/rjasci.2014.834.842.
  4. Bezus EA. Doskolovich LL, Kazanskiy NL. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings. Microelectronic Engineering 2011; 88(2): 170-174. DOI: 10.1016/j.mee.2010.10.006.
  5. Karpeev SV, Khonina SN, Murdagulov AR, Petrov MV. Alignment and study of prototypes of the Offner hyperspectrometer. Vestnik SSAU 2016; 15(1): 197-206. DOI: 10.18287/2412-7329-2016-15-1-197-206.
  6. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217.
  7. Latyev SM, Rumyantsev DM, Kuritsyn PA. Design and process methods of centering lens systems. Journal of Optical Technology 2013; 80(3): 197-200.
  8. Latyev SM, Smirnov AP, Voronin AA, Padun BS, Yablochnikov EI, Frolov DN, Tabachkov AG, Theska R, Zocher P. The concept of an automatic assembly line for microscope objectives, based on adaptive selection of their components. Journal of Optical Technology 2009; 76(7): 436-439.
  9. Zverev VA, Rytova ES, Timoshchuk NN. Errors in fabricating and installing reflective prisms. Journal of Optical Technology 2011; 78(3): 164-169.
  10. Vetrov VN, Ignatenkov BA. Determining birefringence in hemispherical shells of synthetic sapphire. Journal of Optical Technology 2009; 76(7): 446-448.
  11. Berlic Sh. LEDs now, what further? Light & Engineering 2008; 16(4): 52-56.
  12. Varfolomeyev LP. About the design of lighting fixtures with LEDs and appropriate areas of their application. Light & Engineering 2011; 19(4): 26-35.
  13. Soifer VA, Kazanskiy NL, Kharitonov SI. Synthesis of a binary DOE focusing into an arbitrary curve, using the electromagnetic approximation. Optics and Lasers in Engineering 1998; 29(4-5): 237-247.
  14. Doskolovich LL, Kazanskiy NL, Pavel'ev VS, Sojfer VA. Calculation of diffraction optical elements for focusing in out-axis radial focal regions [In Russian]. Avtometriya 1995; 1: 114-119.
  15. Doskolovich LL, Moiseev MA, Kazanskiy NL. On using a supporting quadric method to design diffractive optical elements. Computer Optics 2015; 39(3): 339-346.
  16. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Optics and Lasers in Engineering 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  17. Sodhi R, Turner JU. Relative Positioning of Variational Part Models for design Analysis. Computer-Aided Design 1994; 26(5): 366-378.
  18. Samper S, Adragna P-A, Favreliere H, Pillet M. Modeling of 2D and 3D assemblies taking into account form errors of plane surfaces. Journal of computing and information science in engineering 2009; 9(2): 1-12.
  19. Das A, Franciosa P, Prakash PKS, Ceglarek D. Transfer function of assembly process with compliant non-ideal parts. Procedia CIRP 2014; 21: 177-182.
  20. Williams JR, Amaratunga K. Introduction to wavelets in engineering. Int J Num Meth Eng 1994; 37(14): 2365-2388.
  21. Daubechies I. Ten Lectures on Wavelets. SIAM; 1992.
  22. Rogers DF, Adams JA. Mathematical Elements for Computer Graphics. New York: McGraw-Hill Publishing Company; 1990.
  23. Besl PJ, Mckay ND. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 1992; 14(2): 239-256.
  24. Pierce RS, Rosen D. Simulation of mating between nonanalytical programing formulation. Journal of Computing and Information Science in Engineering 2007; 7(4): 314-321.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20