Precision laser recording of microstructures on molybdenum films for generating a diffractive microrelief
S.D. Poletaev, S.G. Volotovsky

 

 Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We discuss a problem of reducing the thickness of lines of the contact pattern masks produced by laser ablation of thin films of refractory metals and used when synthesizing the micro-relief of diffractive optical elements (DOEs). For a contact mask for a DOE on molybdenum, patterns with features in the range 0.25-0.3 µm were recorder by laser ablation on 40-nm thick films. This is approximately 3 times smaller than the characteristic dimensions obtained by thermochemical recording chromium films of the same thickness in the standard process. A microrelief of height of up to 300 nm was formed in a quartz substrate by reactive ion etching in an inductively coupled plasma through the mask. We show that thin molybdenum films can have promising applications as metallic masks when synthesizing a DOE microrelief.

Keywords:
diffractive microrelief, metallic mask, laser ablation, thermochemical recording, molybdenum film, reactive ion etching.

Citation:
Poletaev SD, Volotovsky SG. Precision laser recording of microstructures on molybdenum films for generating a diffractive microrelief. Computer Optics 2016; 40(3): 422-426. DOI: 10.18287/2412-6179-2016-40-3-422-426.

References:

  1. Zoppel S, Huber H, Reider GA. Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl Phys A 2007; 89(1): 161-163. DOI: 10.1007/s00339-007-4158-7.
  2. Tan B, Dalili A, Venkatakrishnan K. High repetition rate femtosecond laser nano-machining of thin films. Appl Phys A 2009; 95(2): 537-545. DOI: 10.1007/s00339-008-4938-8.
  3. Wang XC, Wu LYL, Shao Q, Zheng HY. 355 nm DPSS UV laser surface texturing on Si substrate. SIMTech technical reports 2009; 10(4): 203-208.
  4. Krause S, Miclea T, Steudel F, Schweizer S, Seifert G. Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation. EPJ Photovoltaics 2013; 4: 40601. DOI: 10.1051/epjpv/2012013.
  5. Ihlemann J, Schafer D. Fabrication of diffractive phase elements for the UV-range by laser ablation patterning of dielectric layers. Applied Surface Science 2002; 197.198: 856-861. DOI: 10.1016/S0169-4332(02)00462-2.
  6. Heise G., Englmaier M, Hellwig C, Kuznicki T, Sarrach S, Huber HP. Laser ablation of thin molybdenum films on transparent substrates at low fluences. Appl Phys A: Materials Science & Processing 2011; 102(1): 173-178. DOI: 10.1007/s00339-010-5993-5.
  7. Bauerle D. Laser chemical processing: an overview to the 30th anniversary. Appl Phys A: Materials Science & Processing 2010; 101(2): 447-459. DOI: 10.1007/s00339-010-5837-3.
  8. Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel’ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: http://dx.doi.org/10.1070/QE2014v044n11ABEH015471.
  9. Zayarny DA, Ionin AA, Kudryashov SI, Makarov SV, Rudenko AA, Bezhanov SG, Uryupin SA, Kanavin AP, Emel’yanov VI, Alferov SV, Khonina SN, Karpeev SV, Kuchmizhak AA, Vitrik OB, Kulchin YuN. Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films. JETP Letters 2015; 101(6): 394-397. DOI: 10.1134/S0021364015060132.
  10. Volkov AV, Moiseev OYu, Poletaev SD. Precision laser recording on a molybdenum films for diffractive microrelief formation. Computer Optics 2013; 37(2): 220-225.
  11. Volkov AV, Moiseev OYu, Poletaev SD, Chistyakov IV. Application of thin molybdenum films in contact masks for manufacturing the micro-relief of diffractive optical elements. Computer Optics 2014; 38(4): 757-762.
  12. Volkov AV, Kazanskiy NL, Moiseev OY, Paranin VD, Poletaev SD, Chistyakov IV. Specific features of the laser irradiation of thin molybdenum films. Technical Physics 2016; 61(4): 579-583. DOI: 10.1134/S1063784216040241.
  13. Poleshchuk AG, Churin EG, Koronkevich VP, Korolkov VP, Kharissov AA, Cherkashin VV, Kiryanov VP, Kiryanov AV, Kokarev SA, Verhoglyad AG. Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure. Appl Opt 1999; 38(8): 1295-1301.
  14. Kazanskiy NL. Research & Education Center of Diffractive Optics. Proceedings of SPIE 2012; 8410: 84100R. DOI: 10.1117/12.923233.
  15. Doskolovich LL, Golub MA, Kazanskiy NL, Khramov AG, Pavelyev VS, Seraphimovich PG, Soifer VA, Volotovskiy SG. Software on diffractive optics and computer generated holograms. Proceedings of SPIE 1995; 2363: 278-284. DOI: 10.1117/12.199645.
  16. Khonina SN, Ustinov AV, Volotovsky SG, Ananin MA. Fast calculation algorithms for diffraction of radially vortical laser fields on the microaperture. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 2010; 12(4): 15-25.
  17. Khonina SN, Ustinov AV, Kovalyov AA, Volotovsky SG. Near-field propagation of vortex beams: models and computation algorithms. Optical Memory and Neural Networks (Information Optics) 2014; 23(2): 50-73.
  18. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015, 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  19. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on the convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20