Sharp resonant focusing of light by a dielectric cylinder with square cross-section and cube
D.A. Kozlov, E.S. Kozlova, V.V Kotlyar

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
In this paper a research on conditions for resonance excitation in a homogeneous dielectric cylinder with square cross-section is conducted using a FDTD-method. It is shown that in a cylinder with square cross-section resonant modes similar to whispering gallery modes can be excited, which allows one to reduce the transverse dimensions of the focal spot. FDTD method demonstrates an acceptable accuracy of the resonant mode detection. A similar result is obtained for a cube on a dielectric substrate: it is possible to achieve the reduction of the transverse dimensions of the focal spot by changing the corresponding cube size.

Keywords:
dielectric cylinder, resonance, light focusing.

Citation:
Kozlov DA, Kozlova ES, Kotlyar VV. Sharp resonant focusing of light by a dielectric cylinder with square cross-section and cube. Computer Optics 2016; 40(4): 431-438. DOI: 10.18287/2412-6179-2016-40-4-431-438.

References:

  1. Foreman MR, Swaim JD, Vollmer F. Whispering gallery mode sensors. Advances in Optics and Photonics 2015; 7(2): 168-240. DOI: 10.1364/AOP.7.000168.
  2. Quan H, Guo Z. Simulation of whispering-gallery-mode resonance for optical miniature biosensor. Fourth International Symposium of Radiative Transfer, Istambul, Turkey. DOI: 10.1615/ICHMT.2004.RAD-4.290.
  3. François A, Zhi Y, Meldrum A. Whispering gallery mode devices for sensing and biosensing. Photonic materials for sensing, biosensing, and display devices 2015; 299: 237-288. DOI: 10.1007/978-3-319-24990-2_9.
  4. Gorodetskii ML, Demchenko YA, Zaitsev DF, Krutikov VN, Zolotarevskii YM, Lyaskovskii VL. High-Q factor optical whispering-gallery mode microresonators and their use in precision measurements. Measurement Techniques 2015; 57(12): 1386-1395. DOI: 10.1007/s11018-015-0639-9.
  5. Righini GC, Dumeige Y, Feron P, Ferrari M, Nunzi Conti G, Ristic D, Soria S. Whispering gallery mode microresonators: fundamentals and applications. La Rivista del Nuovo Cimeto 2011; 34(7): 435-490. DOI: 10.1393/ncr/i2011-10067-2.
  6. Gorodetsky ML, Savchenkov AA, Ilchenko VS. Ultimate Q of optical microsphere resonators. Optics Letters 1996; 21(7): 453-455.
  7. Geints YE, Zemlyanov AA, Panina EK. Photonic jets from resonantly exited transparent dielectric microspheres. Journal of the Optical Society of America B 2012; 29(4): 758-762. DOI: 10.1364/JOSAB.29.000758.
  8. Kozlov DA, Kotlyar VV. Resonant laser focus light by uniformity dielectric microcylinder. Computer Optics 2014; 38(3): 393-396.
  9. Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Nunzi Conti G, Pelli S, Soria S, Righini GC. Spherical whispering-gallery-mode microresonators. Laser and Photonics Reviews 2010; 4(3): 457-482.
  10. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003; 421: 925-928.
  11. Kotlyar VV, Kovalev AA, Kozlov DA. Calculating the resonance radius of a dielectric cylinder under illumination by a plane TE-wave. Optik 2016; 127(8): 3803-3808. DOI: 10.1016/j.ijleo.2016.01.058.
  12. Mandelshtam VA, Taylor HS. Harmonic inversion of time signals and its applications. Journal of Chemical Physics 1997; 107(17): 6756-6769. DOI: 10.1063/1.475324.
  13. Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals: molding the flow of light. Princeton: Princeton University Press; 2008.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20