Etching of silicon dioxide in off-electrode plasma using a chrome mask
V.V. Podlipnov
, V.A.Kolpakov, N.L. Kazanskiy

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We discuss results of etching a Cr-SiO2 structure is in a flow of off-electrode gas-discharge plasma in a CF4 + O2 gas at a ratio of 50: 1, at the discharge current I = 80 mA, accelerating voltage U = 1.2 kV, and process duration t = 5 min. It was shown that changes in the intensity of Raman spectral bands in the course of etching correspond to nanoscale changes in the thin Cr-SiO2 films and a chrome mask. The peculiarity of the etching process consists in the removal of the Cr2O3 oxide with increasing amount of nitrogen molecules in the structure of the Cr film. It was found that spray products deposited inside the chrome mask windows at U = 1.2 kV and I = 80 mA are in the form of Cr2N, according to their Raman spectra.

Keywords:
diffusion, ion-electron beam, etch, reprecipitation, micromasking.

Citation:
Podlipnov VV, Kolpakov VA, Kazanskiy NL. Etching of silicon dioxide in off-electrode plasma using a chrome mask. Computer Optics 2016; 40(6): 830-836. DOI: 10.18287/2412-6179-2016-40-6-830-836.

References:

  1. Bobrov ST, Greisukh GI, Turkevich YuG. Optics of diffractive elements and systems [In Russian]. Leningrad: “Mashinostroenie” Publisher, 1986.
  2. Kazanskiy NL, Kolpakov VА, Kolpakov AI, Krichevsky SV. Gas-discharge devices forming directed flows of the off-electrode plasma. Part I. Analysis and structural features of devices [in Russian]. Nauchnoe Priborostroenie 2012; 22(1): 13-18.
  3. Kazanskiy NL, Kolpakov VA. Study of optical microrelief formation in the plasma generated high-voltage gas discharge outside the electrode [In Russian]. Moscow: “Radio and Svyas” Publisher; 2009.
  4. Kazanskiy NL, Kolpakov VА, Krichevsky SV. Simulation of cleaning the surface of the dielectric substrate in the process of plasma high-voltage gas discharge [In Russian]. Computer Optics 2005; 28: 80-86.
  5. Kazanskiy NL, Kolpakov VА, Kolpakov AI. Anisotropic etching of SiO2 in high-voltage gas-discharge plasmas. Russian Microelectronics; 2004; 33(3): 169-182. DOI: 10.1023/B:RUMI.0000026175.29416.eb.
  6. Kazanskiy NL, Kolpakov VА. Effect of bulk modification of polymers in a directional low-temperature plasma flow. Tecnical phisics; 2009; 54(9): 1284-1289. DOI: 10.1134/S1063784209090060.
  7. Kazanskiy NL, Kolpakov VA, Podlipnov VV. Gas discharge devices generating the directed fluxes of off-electrode plasma. Vacuum 2014; 101: 291-297. DOI: 10.1016/j.vacuum.2013.09.014.
  8. Volkov AV, Moiseev OYu, Poletaev SD, Chistyakov IV. Application of thin molybdenum films in contact masks for manufacturing the micro-relief of diffractive optical elements. Computer Optics 2014; 38(4): 757-762.
  9. Protasov DYu, Vitcina NR, Valicheva NA, Dulcev PhN, Malin TV, Zhuravlev KS. Chromium mask for plasma-chemical etching of Al x Ga1− x N layers. Thecnical Phisics; 2014; 59(9): 1356-1359. DOI: 10.1134/S1063784214090242.
  10. Volkov AV, Volodkin BO, Dmitriyev SV, Yeropolov VA, Moiseyev OYu, Pavelyev VS. Thin film copper layer as a mask during the plasma chemical etching quartz [In Russian]. Computer Optics 2007; 31(4): 52-54.
  11. Zavyalov PS, Chugui YuV. The formation of light templates for large-sized objects using the diffraction optics. Computer Optics 2013; 37(4): 419-425.
  12. Veiko VP, Shakhno EA, Sinev DA. Improvement of laser thermochemical recording on thin chromium films using repeated processing [In Russian]. Izvestiya vysshikh ucheb­nykh zavedeniy. Priborostroyeniye 2013; 56(12): 57-61.
  13. Volkov AV, Kazanskiy NL, Moiseev OY, Poletayev SD.           Thermal oxidative degradation of molybdenum films under laser ablation. Thecnical phisics 2015; 60(2): 265-269. DOI: 10.1134/S1063784215020255.
  14. Nesterenko DV, Poletaev SD, Moiseev OY, Yakunenkova DM, Volkov AV, Skidanov RV. The fabrication of the curved diffraction gratings for UV [In Russian]. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 2011; 13(4): 66-71.
  15. Kazanskiy NL, Kolpakov VA, Kolpakov AI, Krichevsky SV, Podlipnov VV. Gas-discharge devices forming directed flows of the off-electrode plasma. Part II. Results of updating. New devices [In Russian]. Nauchnoe Priborostroenie 2012; 22(2): 44-50.
  16. He J, Lu JQ, Xie GQ, Qian L, Chen KF, Zhang XL, Luo MF. Characterization of CrOx-Y2O3 catalysts for fluorination of 2-chloro-1, 1, 1-trifluoroethane. Indian journal of chemistry. Section A 2009; 48A: 489-497.
  17. Barshilia HC, Rajam KS. Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. Journal of Materials Research 2004; 19(11): 3196-3205. DOI: 10.1557/JMR.2004.0444.
  18. Gaisler SV, Semenova LI, Sharafutdinov RG, Kolesov BA. Analysis of the Raman spectra of amorphous-nanocrystalline silicon films. Physics of the solid state 2004; 46(8): 1528-1532. DOI: 10.1134/1.1788789.
  19. Barata A, Cunha L, Moura C. Characterisation of chromium nitride films produced by PVD techniques. Thin Solid Films 2001; 398(399): 501-506. DOI: 10.1016/S0040-6090(01)01498-5.
  20. Data base Project RRUFF. Eskolaite. Source: áhttp://rruff.info/chem=Cr /notchem=Crome/display=defa­ult/R060892ñ.
  21. Raman data and analysis. Raman spectroscopy for analysis and monitoring. Source: áhttp://www.horiba.com/filea­dmin/uploads/Scientific/Documents/Raman/bands.pdfñ.
  22. Buttà N, Cinquegrani L, Mugno E, Tagliente A, Pizzini S. A family of tin-oxide-based sensors with improved selectivity to methane. Sensors and Actuators B: Chemical 1992; 6(1-3): 253-256.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20