Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings
N.V. Golovastikov, D.A. Bykov, L.L. Doskolovich

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
We consider diffraction of a three-dimensional (3D) spatiotemporal optical pulse by a phase-shifted Bragg grating (PSBG). The pulse diffraction is described in terms of signal propagation through a linear system with its transfer function determined by the reflection or transmission coefficient of the PSBG. It is shown that a PSBG can perform temporal differentiation in reflection and temporal integration in transmission of a 3D spatiotemporal optical pulse envelope. Second order differentiation of the incident pulse envelope is achieved using two differentiating PSBGs separated by a vacuum layer with the optical thickness of a quarter of the Bragg wavelength. The possibility of performing the said operations are confirmed by rigorous simulation results.

Keywords:
thin films; pulse shaping.

Citation:
Golovastikov NV, Bykov DA, Doskolovich LL. Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings. Computer Optics 2017; 41(1): 13-21.  DOI: 10.18287/2412-6179-2017-41-1-13-21.

References:

  1. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343(6167): 160-163. DOI: 10.1126/science.1242818.
  2. Slavík R, Park Y, Kulishov M, Azaña J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt Lett 2009; 34(20): 3116-3118. DOI: 10.1364/OL.34.003116.
  3. Rivas LM, Boudreau S, Park Y, Slavík R, LaRochelle S, Carballar A, Azaña J. Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators. Opt Lett 2009; 34(12): 1792-1794. DOI: 10.1364/OL.34.001792.
  4. Berger NK, Levit B, Fischer B, Kulishov M, Plant DV, Azaña J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Opt Express 2007; 15(2): 371-381. DOI: 10.1364/OE.15.000371.
  5. Kulishov M, Azaña J. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings. Opt Express 2007; 15(10): 6152-6166. DOI: 10.1364/OE.15.006152.
  6. Ngo NQ. Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission. Opt Lett 2007; 32(20): 3020-3022. DOI: 10.1364/OL.32.003020.
  7. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
  8. Golovastikov NV, Bykov DA, Doskolovich LL, Bezus EA. Spatial optical integrator based on phase-shifted Bragg gratings. Opt Commun 2015; 338: 457-460. DOI: 10.1016/j.optcom.2014.11.007.
  9. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  10. Bykov DA, Doskolovich LL, Soifer VA. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals. JOSA A 2012; 29(8): 1734-1740. DOI: 10.1364/JOSAA.29.001734.
  11. Ruan Z. Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt Lett 2015; 40(4): 601-604. DOI: 10.1364/OL.40.000601.
  12. Liu W, Li M, Guzzon RS, Norberg EJ, Parker JS, Lu M, Coldren LA, Yao J. A fully reconfigurable photonic integrated signal processor. Nature Photonics 2016; 10(3): 190-195. DOI: 10.1038/nphoton.2015.281.
  13. Yang T, Dong J, Lu L, Zhou L, Zheng A, Zhang X, Chen J. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator. Sci Rep 2014; 4: 5581. DOI: 10.1038/srep05581.
  14. Wu J, Cao P, Hu X, Jiang X, Pan T, Yang Y, Qiu C, Tremblay C, Su Y. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems. Opt Express 2014; 22(21): 26254-26264. DOI: 10.1364/OE.22.026254.
  15. Ferrera M, Park Y, Razzari L, Little BE, Chu ST, Mo-randotti R, Moss DJ, Azaña J. All-optical 1st and 2nd order integration on a chip. Opt Express 2011; 19(23): 23153-23161. DOI: 10.1364/OE.19.023153.
  16. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal cavities for temporal differentiation of optical signals. Opt Lett 2013; 38(7): 1149-1151. DOI: 10.1364/OL.38.001149.
  17. Kazanskiy NL, Serafimovich PG. Coupled-resonator optical waveguides for temporal integration of optical signals. Opt Express 2014; 22(11): 14004-14013. DOI: 10.1364/OE.22.014004.
  18. Golovastikov NV, Bykov DA, Doskolovich LL, Soifer VA. Spatiotemporal Optical Pulse Transformation by a Resonant Diffraction Grating. JETP 2015; 121(5): 785-792. DOI: 10.1134/S1063776115110138.
  19. Golovastikov N, Bykov D, Doskolovich L. Spatiotemporal pulse shaping using resonant diffraction gratings. Opt Lett 2015; 40(15): 3492-3495. DOI: 10.1364/OL.40.003492.
  20. Sepke SM, Umstadter DP. Exact analytical solution for the vector electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser modes. Opt Lett 2006; 31(10): 1447-1449. DOI: 10.1364/OL.31.001447.
  21. Zhou G. The analytical vectorial structure of a nonpa-raxial Gaussian beam close to the source. Opt Express 2008; 16(6): 3504-3514. DOI: 10.1364/OE.16.003504.
  22. Doskolovich LL, Golovastikov NV, Bykov DA, Kharito­nov SI. Resonant approximation of phase-shifted Bragg grating (PSBG) spectra. Computer Optics 2015; 39(3): 311-318. DOI: 10.18287/0134-2452-2015-39-3-311-318.
  23. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. JOSA A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.
  24. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T. Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 2002; 66: 045102. DOI: 10.1103/PhysRevB.66.045102.
  25. Li L. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. JOSA A 1996; 13(5): 1024-1035. DOI: 10.1364/JOSAA.13.001024.
  26. Soifer VA, ed. Diffraction optics and nanophotonics [In Russian]. Moscow: “Fizmatlit” Publisher; 2014. ISBN: 978-5-9221-1571-1.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20