Calculation of the interference pattern formed by image-carrying light beams diffracted by an acoustic wave in a uniaxial crystal
A.S. Machikhin, L.I. Burmak, V.E. Pozhar

 

Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences,
National Research University "MPEI",

National Research Nuclear University "MEPhI"

Full text of article: Russian language.

 PDF

Abstract:
A scheme of full-field optical coherence microscopy based on a Michelson interferometer with wideband light source and acousto-optic spectral filtration in the output channel is studied. Mathematical formulas for calculating the interference pattern formed by image-carrying light beams diffracted by an acoustic wave in a uniaxial crystal are derived for this scheme. Results of numerical modeling and its comparison with experimental data are given.

Keywords:
acousto-optic interaction, image spectral filtration, optical coherence microscopy, interference pattern visibility.

Citation:
Machikhin AS, Burmak LI, Pozhar VE. Calculation of the interference pattern formed by image-carrying light beams diffracted by an acoustic wave in a uniaxial crystal. Computer Optics 2017; 41(2): 169-174. DOI: 10.18287/2412-6179-2017-41-2-169-174.

References:

  1. Usler GH, Lindner MW. “Coherence radar” and “spectral radar” – new tools for dermatological diagnosis. Journal of Biomedical Optics 1998; 3(1): 21-31. DOI: 10.1117/1.429899.
  2. Stifter D. Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Applied Physics B 2007; 88(3): 337-357. DOI: 10.1007/s00340-007-2743-2.
  3. Drexler W, Fujimoto JG, eds. Optical Coherence Tomography: Technology and Applications. Springer International Publishing Switzerland; 2015. ISBN: 978-3-319-06418-5.
  4. Povazay B, Unterhuber A, Hermann B, Sattmann H, Arthaber H, Drexler W. Full-field time-encoded frequency-domain optical coherence tomography. Optics Express 2006; 14(17): 7661-7669. DOI: 10.1364/OE.14.007661.
  5. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography – principles and applications. Reports on Progress in Physics 2003; 66(2): 239-303. DOI: 10.1088/0034-4885/66/2/204.
  6. Viskovatykh AV, Machikhin AS, Pozhar VE, Pustovoit VI, Viskovatykh DA. Combined optical-coherence and spectral microscopy based on tunable acousto-optic filters of images. Technical Physics Letters 2014; 40(2): 157-160. DOI: 10.1134/S106378501402028X.
  7. Machikhin AS, Pozhar VE, Viskovatykh AV, Burmak LI. Acousto-optical tunable filter for combined wide-band, spectral and optical coherence microscopy. Applied Optics 2015; 54(25): 7508-7513. DOI: 10.1364/AO.54.007508.
  8. Yariv A, Yeh P. Optical Waves in Crystals. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons Inc.; 1984.
  9. Balakshii VI, Paryigin VN, Chirikov LE. Physical principles of acousto-optics [In Russian]. Moscow: “Radio i svyaz” Publisher; 1985.
  10. Pozhar V, Machihin A. Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals. Applied Optics 2012; 51(19): 4513-4519. DOI: 10.1364/AO.51.004513.
  11. Machihin AS, Pozhar VE. Image transformation caused by wide-angle acousto-optic interaction. Quantum Electronics 2010; 40(9): 837-841. DOI: 10.1070/QE2010v040n09AB­EH014371.
  12. Lychagov VV, Ryabukho VP, Kalyanov AL, Smirnov IV. Low-coherence interferometry of stratified structures using polychromatic light and digital interferogram recording and processing [In Russian]. Computer Optics 2010; 34(4): 511-524.
  13. Dhalla A-H, Izatt JA. Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line. Biomedical Optics Express 2011; 2(5): 1218-1232. DOI: 10.1364/BOE.2.001218.
  14. Bytikov EI. Optics: Textbook for high schools [In Russian]. Moscow: “Vusshaya Shkola” Publisher; 1986.
  15. Machihin AS, Pozhar VE. Spatial and spectral image distortions caused by diffraction of an ordinary polarized light beam by an ultrasonic wave. Quantum Electronics 2015; 45(2): 161-165. DOI: 10.1070/QE2015v045n02ABEH015385.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20