Optimal placement of surveillance devices in a three-dimensional environment for blind zone minimization
V.V. Pechenkin, M.S. Korolev

 

Yu. A. Gagarin Saratov State Technical University

Full text of article: Russian language.

 PDF

Abstract:
This paper discusses the usage of devices of various types and configuration in the developed software for blind zone minimization via optimal placement of the surveillance devices when observing targets in a complex three-dimensional dynamic scene. We describe the architecture of the software complex, the principle of operation of the surveillance devices, and a blind zone detection algorithm.
We propose a formalization of the problem, also describing specific tasks of object visibility definition, reduced to solving the optimization problems of different complexity classes based on a special visibility graph.

Keywords:
surveillance devices, audio sensors, video sensors, placement optimization, visibility, observability.

Citation:
Pechenkin VV, Korolev MS. Optimal placement of surveillance devices in a three-dimensional environment for blind zone minimization. Computer Optics 2017; 41(2): 245-253. DOI: 10.18287/2412-6179-2017-41-2-245-253.

References:

  1. Davidyuk NV. Automation of detecting sensors selection procedure in physical protection systems. Vestn Astrakhan State Technical Univ. Ser Management, Computer Sciences and Informatics 2009; 1: 98-100.
  2. El-Attar A, Karim M, Tairi H, Ionita S. A robust multistage algorithm for camera self-calibration dealing with varying intrinsic parameters. Journal of Theoretical and Applied Information Technology 2011; 32(1): 46-54.
  3. Civera J, Bueno DR, Davison AJ, Montiel JMM. Camera self-calibration for sequential bayesian structure from motion // In: Proc ICRA’09 2009: 403-408.  DOI: 10.1109/ROBOT.2009.5152719.
  4. Fiore L, Somasundaram G, Drenner A, Papanikolopoulos N. Optimal camera placement with adaptation to dynamic scenes. In: Proc ICRA'08 2008: 956-961. DOI: 10.1109/ROBOT.2008.4543328.
  5. Bodor R, Schrater P, Papanikolopoulos N. Multi-camera positioning to optimize task observability // In: Proc AVSS 2005: 552-557. DOI: 10.1109/AVSS.2005.1577328.
  6. Zhao J, Haws D, Yoshida R, Cheung S. Approximate techniques in solving optimal camera placement problems. International Journal of Distributed Sensor Networks 2013; 2013: 241913. DOI: 10.1155/2013/241913.
  7. Hänel M, Kuhn S, Henrich D, Pannek J, Grüne L. Optimal camera placement to measure distances conservativly regarding static and dynamic obstacles. International Journal of Sensor Networks 2012; 12(1): 25-36. DOI: 10.1504/IJSNET.2012.047713.
  8. Kim H, Sarim M, Takai T, Guillemaut J-Y, Hilton A. Dynamic 3D scene reconstruction in outdoor environments. 3DPVT 2010: 613-626.
  9. Liu J, Hubbold R. Automatic Camera Calibration and Scene Reconstruction with Scale-Invariant Features. ISVC'06 2006; 1: 558-568.
  10. Hengel VD, Hill R, Ward B, Cichowski A, Detmold H, Madden C, Dick A, Bastian J. Automatic camera placement for large scale surveillance networks. Proc WACV 2009: 1-6. DOI: 10.1109/WACV.2009.5403076.
  11. Shishalov IS, Filimonov AV, Gromazin OA, Parkhachev VV. Method for determining the optimal configuration of the video monitoring system of the forest [In Russian]. Pat RF of Invent N 2561925 of September 25, 2015.
  12. Holt R, Hong M, Martini R, Mukherjee I, Netravali R, Wang J. Summary of results on optimal camera placement for boundary monitoring. Proc SPIE 2007; 6570: 657005. DOI: 10.1117/12.719139.
  13. Azhmukhamedov IM. Formalization of the task of placing elements of the security system in the controlled area [In Russian]. Vestnik of Astrakhan State Technical University 2008; 1(42): 77-79 .
  14. Van Beeck K, Goedemé T, Tuytelaars T. Real-time vision-based pedestrian detection in a truck’s blind spot zone using a warping window approach. In: Ferrier J, Bernard A, Gusikhin O, Madani K, eds. Informatics in Control, Automation and Robotics. Chapter 16. Berlin: Springer International Publishing; 2014: 251-264. DOI: 10.1007/978-3-319-03500-0_16.
  15. Cardarelli E. Vision-based blind spot monitoring. Handbook of Intelligent Vehicles 2012: 1071-1087. DOI: 10.1007/978-0-85729-085-4_44.
  16. Pechenkin VV, Lepestkin DA. The project approach to the formation of IT-competencies of technical specialists in the development of a software package for optimizing the location of surveillance cameras for objects [In Russian]. In Book: Dolinina ON, ed. Modern methods of teaching for engineering students [In Russian]. Saratov: State Technical University of Saratov Publisher; 2014: 156-168.
  17. Pechenkin VV, Reshetnikov DS. Building a model of governance in complex dynamic technical systems [In Russian]. In Book: Management problems in socio-economic and technical systems. Saratov: "SGTU" Publisher, 2014: 16-19.
  18. Yusoff SKM, Md Said A, Ismail I. Optimal camera placement for 3D environment. Proc ICSECS 2011; II: 448-459. DOI: 10.1007/978-3-642-22191-0_39.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20