Binary diffraction gratings for controlling polarization and phase of laser light [review]
S.S. Stafeev, A.G. Nalimov, L. O'Faolain, M.V. Kotlyar

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
Components of thin microoptics with nanostructured surface for polarization and phase control are investigated. These components include transmitting or reflecting subwavelength diffraction gratings that have space-variant direction and filling factor, but near-uniform period and depth of the relief, whose features can vary in size from dozens to hundreds of nanometers for the visible wavelength range. The sectoral diffractive polarizers with a small number of sectors, which transform linear polarization into radial or azimuthal polarization, and subwavelength binary microlenses for tight focusing of laser light are investigated in detail. Examples of specific micropolarizers and metalenses manufactured in amorphous silicon films are given.

Keywords:
subwavelength grating, metasurface, Pancharatnam–Berry phase, radially polarized light, azimuthally polarized light, tight focusing, metalens.

Citation:
Stafeev SS, Nalimov AG, O'Faolain L, Kotlyar MV. Binary diffraction gratings for controlling polarization and phase of laser light [review]. Computer Optics 2017; 41(3): 299-314. DOI: 10.18287/2412-6179-2017-41-3-299-314.

References:

  1. Soifer VA. Diffractive Nanophotonics. Boca Raton, USA: CRC Press; 2014. ISBN: 978-1-466-59069-4.
  2. Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures. J Mod Opt 1996; 43(10): 2063-2086. DOI: 10.1080/09500349608232871.
  3. Kotlyar VV, Zalyalov OK. Design of diffractive optical elements modulating polarization. Optik 1996; 103(3): 125-130.
  4. Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27(5): 285-287. DOI: 10.1364/OL.27.000285.
  5. Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001; 26(18): 1424-1426. DOI: 10.1364/OL.26.001424.
  6. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  7. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett 2003; 91(23):233901. DOI: 10.1103/PhysRevLett.91.233901.
  8. Salamin YI, Harman Z, Keitel CH. Direct High-Power Laser Acceleration of Ions for Medical Applications. Phys Rev Lett 2008; 100(15): 155004. DOI: 10.1103/PhysRev­Lett.100.155004.
  9. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35(23):3928-3930. DOI: 10.1364/OL.35.003928.
  10. de Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt 2002; 7(3): 359-371.  DOI: 10.1117/1.1483879.
  11. Li X, Chon JWM, Wu S, Evans RA, Gu M. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer. Opt Lett 2007; 32(3): 277-279. DOI: 10.1364/OL.32.000277.
  12. Noto M, Keng D, Teraoka I, Arnold S. Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys J 2007; 92(12):4466–72.
  13. Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, et al. Concentric ring metal grating for generating radially polarized light. Appl Opt 2011; 50(16): 2451-2457.  DOI: 10.1364/AO.50.002451.
  14. Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 2013; 13(9): 4269-4274. DOI: 10.1021/nl402039y
  15. Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015; 78(2): 24401. DOI: 10.1088/0034-4885/78/2/024401.
  16. Päivänranta B, Passilly N, Pietarinen J, Laakkonen P, Kuittinen M, Tervo J. Low-cost fabrication of form-birefringent quarter-wave plates. Opt Express 2008; 16(21): 16334-16342. – DOI: 10.1364/OE.16.016334.
  17. Lin M-Y, Tsai T-H, Kang YL, Chen Y-C, Huang Y-H, Chen Y-J, et al. Design and fabrication of birefringent nano-grating structure for circularly polarized light emission. Opt Express 2014; 22(7): 7388-7398.  DOI: 10.1364/OE.22.007388.
  18. Lin MY, Tsai TH, Hsiao LJ, Tu WC, Wu SH, Wang LA, et al. Design and Fabrication of Nano-Structure for Three-Dimensional Display Application. IEEE Photonics Technol Lett 2016; 28(8): 884-886. DOI: 10.1109/LPT.2016.2516338.
  19. Levy U, Tsai C-H, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004; 29(15): 1718-1720. DOI: 10.1364/OL.29.001718.
  20. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt Lett 2008; 33(23): 2782-2784. DOI: 10.1364/OL.33.002782.
  21. Lerman GM, Levy U. Radial polarization interferometer. Opt Express 2009; 17(25): 23234-23246.  DOI: 10.1364/OE.17.023234.
  22. Kämpfe T, Parriaux O. Depth-minimized, large period half-wave corrugation for linear to radial and azimuthal polarization transformation by grating-mode phase management. J Opt Soc Am A 2011; 28(11): 2235-2242. DOI: 10.1364/JOSAA.28.002235.
  23. Kämpfe T, Sixt P, Renaud D, Lagrange A, Perrin F, Parriaux O. Segmented subwavelength silicon gratings manufactured by high productivity microelectronic technologies for linear to radial/azimuthal polarization conversion. Opt Eng 2014; 53(10): 107105.  DOI: 10.1117/1.OE.53.10.107105.
  24. Stafeev SS, Nalimov AG, Kotlyar M V., Gibson D, Song S, O’Faolain L, et al. Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt Express 2016; 24(26): 29800-29813.  DOI: 10.1364/OE.24.029800.
  25. Stafeev SS, Kotlyar MV, O’Faolain L, Nalimov AG, Kotlyar VV. A four-zone transmission azimuthal micropolarizer with phase shift. Computer Optics 2016; 40(1): 12-18. DOI: 10.18287/2412-6179-2016-40-1-12-18.
  26. Debnath K, O’Faolain L, Gardes FY, Steffan AG, Reed GT, Krauss TF. Cascaded modulator architecture for WDM applications. Opt Express 2012; 20(25): 27420-27428. DOI: 10.1364/OE.20.027420.
  27. Stafeev SS, O’Faolain L, Kotlyar V V., Nalimov AG. Tight focus of light using micropolarizer and microlens. Appl Opt 2015; 54(14): 4388-4394. DOI: 10.1364/AO.54.004388.
  28. Paul T, Matthes A, Harzendorf T, Ratzsch S, Zeitner UD. Half-wave phase retarder working in transmission around 630nm realized by atomic layer deposition of sub-wavelength gratings. Opt Mater Express 2015; 5(1): 124-129. DOI: 10.1364/OME.5.000124.
  29. Kämpfe T, Tonchev S, Gomard G, Seassal C, Parriaux O. Hydrogenated amorphous silicon microstructuring for 0th-order polarization elements at 1.0-1.1 μm wavelength. IEEE Photonics J 2011; 3(6): 1142-1148. DOI: 10.1109/JPHOT.2011.2175444.
  30. Ventola K, Tervo J, Laakkonen P, Kuittinen M. High phase retardation by waveguiding in slanted photonic nanostructures. Opt Express 2011; 19(1): 241-246. DOI: 10.1364/OE.19.000241.
  31. Yamada I, Yamashita N, Einishi T, Saito M, Fukumi K, Nishii J. Design and fabrication of an achromatic infrared wave plate with Sb–Ge–Sn–S system chalcogenide glass. Appl Opt 2013; 52(7): 1377-1382. DOI: 10.1364/AO.52.001377.
  32. Yamada I, Yamashita N, Tani K, Einishi T, Saito M, Fukumi K, et al. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass. Opt Lett 2011; 36(19): 3882-3884. DOI: 10.1364/OL.36.003882.
  33. Mori T, Yamashita N, Kasa H, Fukumi K, Kintaka K, Nishii J. Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint. J Ceram Soc Japan 2009; 117(1370): 1134-1137. DOI: 10.2109/jcersj2.117.1134.
  34. Zhao H, Yuan D. Quarter wave retarder design with subwavelength gratings based on modal method. Optik 2016; 127(1): 212-214. DOI: 10.1016/j.ijleo.2015.10.045.
  35. Nalimov AG, O’Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-236.
  36. Kotlyar VV, Stafeev SS, Kotlyar MV, Nalimov AG, O’Faolain L. Subwavelength micropolarizer in a gold film for visible light. Appl Opt 2016; 55(19): 5025-5032. DOI: 10.1364/AO.55.005025.
  37. Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L. A four-zone reflective azimuthal micropolarizer. Computer Optics 2015; 39(5): 709-715. DOI: 10.18287/0134-2452-2015-39-5-709-715.
  38. Yamada I. Fabrication and evaluation of reflective wave plate with subwavelength grating structure. Proceedings of SPIE 2016; 9888: 98880P. DOI: 10.1117/12.2214800.
  39. Yamada I, Ishihara T, Yanagisawa J. Reflective waveplate with subwavelength grating structure. Jpn J Appl Phys. 2015; 54(9): 092203. DOI: 10.7567/JJAP.54.092203.
  40. Saha SC, Ma Y, Grant JP, Khalid A, Cumming DRS. Imprinted terahertz artificial dielectric quarter wave plates. Opt Express 2010; 18(12): 12168-12175. DOI: 10.1364/OE.18.012168.
  41. Saha SC, Ma Y, Grant JP, Khalid A, Cumming DRS. Imprinted quarter wave plate at terahertz frequency. J Vac Sci Technol B 2010; 28(6):C6M83-C6M87. DOI: 10.1116/1.3497023.
  42. Saha SC, Yong M, Grant JP, Khalid A, Cumming DRS. Low-loss terahertz artificial dielectric birefringent quarter-wave plates. IEEE Photonics Technol Lett 2010; 22(2): 79-81. DOI: 10.1109/LPT.2009.2036242.
  43. Zhang B, Gong Y, Dong H. Thin-form birefringence quarter-wave plate for lower terahertz range based on silicon grating. Opt Eng. 2013; 52(3): 030502. DOI: 10.1117/1.OE.52.3.030502.
  44. Gong Y, Dong H. Terahertz waveplate made with transparency. 37th Int Conf Infrared, Millimeter, Terahertz Waves 2012; 1-2. DOI: 10.1109/IRMMW-THz.2012.6380469.
  45. Gong Y, Chen Z, Hong M. Investigation on Terahertz waveplate at upper Terahertz band. In: 2011 International Conference on Infrared, Millimeter, and Terahertz Waves. 2011; 1-2. DOI: 10.1109/irmmw-THz.2011.6104986.
  46. Zhang B, Gong Y. Achromatic terahertz quarter waveplate based on silicon grating. Opt Express 2015; 23(10): 14897-14902. DOI: 10.1364/OE.23.014897.
  47. Sun L, Lü Z, Zhang D, Zhao Z, Yuan J. Achromatic terahertz quarter-wave retarder in reflection mode. Appl Phys B 2012; 106(2): 393-398. DOI: 10.1007/s00340-011-4723-9.
  48. Yakunin VP, Nesterov A V, Niziev VG. Generation of high power radially polarized beam. Proc SPIE 2000; 3889: 718-724. DOI: 10.1117/12.380954.
  49. Zhang Z, Dong F, Cheng T, Qiu K, Zhang Q, Chu W, et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry. Rev Sci Instrum 2014; 85(10): 105002. DOI: 10.1063/1.4897270.
  50. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13(2): 139-150. DOI: 10.1038/nmat3839.
  51. Kildishev AV, Boltasseva A, Shalaev VM. Planar Photonics with Metasurfaces. Science 2013; 339(6125): 1232009. DOI: 10.1126/science.1232009.
  52. Yao K, Liu Y. Plasmonic metamaterials. Nanotechnol Rev 2014; 3(2): 177-210. DOI: 10.1515/ntrev-2012-0071.
  53. Li Z, Yao K, Xia F, Shen S, Tian J, Liu Y. Graphene Plasmonic metasurfaces to steer infrared light. Sci Rep 2015; 5(1): 12423. DOI: 10.1038/srep12423.
  54. Lu F, Liu B, Shen S. Infrared wavefront control based on graphene metasurfaces. Adv Opt Mater 2014; 2(8): 794-799. DOI; 10.1002/adom.20140010.
  55. Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012; 6(5): 3677-3694. DOI: 10.1021/nn300989g.
  56. Gomez-Diaz JS, Tymchenko M, Alù A. Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips. Opt Mater Express 2015; 5(10): 2313-2329. DOI: 10.1364/OME.5.002313.
  57. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 2011; 6(10): 630-634. DOI: 10.1038/nnano.2011.146.
  58. Hwang EH, Das Sarma S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 2007; 75(20): 1-6. DOI: 10.1103/PhysRevB.75.205418.
  59. Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin X, et al. Gate-controlled active graphene metamaterials at terahertz frequencies. OECC’2012 2012; 11(11): 582-583. DOI: 10.1109/OECC.2012.6276582.
  60. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012; 487(7405): 77-81. DOI: 10.1038/nature11254.
  61. Fei Z, Rodin AS, Andreev GO, Bao W, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012; 487(7405): 82-85. DOI: 10.1038/nature11253.
  62. Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol; 2012; 7(5): 330-334. DOI: 10.1038/nnano.2012.59.
  63. Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2013; 2(3): e70. DOI: 10.1038/lsa.2013.26.
  64. Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan X-C, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013; 340(6130): 331-334. DOI: 10.1126/science.1233746.
  65. Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012; 3: 1198.
  66. Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012; 11(5): 426-431. DOI: 10.1038/nmat3292.
  67. Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013; 13(2): 829-834. DOI: 10.1021/nl304761m.
  68. Liu Y, Zhang X. Metasurfaces for manipulating surface plasmons. Appl Phys Lett 2013; 103(14): 141101. DOI: 10.1063/1.4821444.
  69. Qin F, Ding L, Zhang L, Monticone F, Chum CC, Deng J, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2016; 2(1): e1501168. DOI: 10.1126/sciadv.1501168.
  70. Ni X, Emani NK, Kildishev AV., Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012; 335(6067): 427. DOI: 10.1126/science.1214686.
  71. Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013; 4: 2807. DOI: 10.1038/ncomms3807.
  72. Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013; 4:2808. DOI: 10.1038/ncomms3808.
  73. Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin hall effect at metasurfaces. Science. 2013; 339(6126): 1405–1407. DOI: 10.1126/science.1231758.
  74. Lee J, Jung S, Chen PY, Lu F, Demmerle F, Boehm G, et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv Opt Mater 2014; 2(11): 1057-1063. DOI: 10.1002/adom.201400185.
  75. Kivshar YS. Metamaterials, metasurfaces, and metadevices. Aust Phys 2015; 52(2): 47-50.
  76. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14(3): 1394-1399. DOI: 10.1021/nl4044482.
  77. Sun S, Yang K, Wang C, Juan T, Chen WT, Liao CY, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12(12): 6223-6229. DOI: 10.1021/nl3032668.
  78. Lan L, Jiang W, Ma Y. Three dimensional subwavelength focus by a near-field plate lens. Appl Phys Lett 2013; 102(23): 231119. DOI: 10.1063/1.4810004.
  79. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 2009; 9(1): 235-238. DOI: 10.1021/nl802830y.
  80. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. DOI: 10.1021/nl302516v.
  81. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. DOI: 10.1038/ncomms8069.
  82. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10(11): 937-943. DOI: 10.1038/nnano.2015.186.
  83. Ni X, Ishii S, Kildishev A V, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2013; 2(4): e72. DOI: 10.1038/lsa.2013.28.
  84. West PR, Stewart JL, Kildishev A V, Shalaev VM, Shkunov V V, Strohkendl F, et al. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014; 22(21): 26212-26221. DOI: 10.1364/OE.22.026212.
  85. Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014; 345(6194): 298-302. DOI: 10.1126/science.1253213.
  86. Kotlyar VV, Nalimov AG, Kotlyar MV. Modeling a polarization microlens to focus linearly polarized light into a near-circular subwavelength focal spot. Computer Optics 2016; 40(4): 451-457. DOI: 10.18287/2412-6179-2016-40-4-451-457.
  87. Kotlyar V V, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linearly polarized light. Appl Opt 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
  88. Stafeev SS, Kotlyar VV, О’Faolain L. Subwavelength focusing of laser light by microoptics. J Mod Opt 2013; 60(13): 1050-1059. DOI: 10.1080/09500340.2013.831136.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20