Subwavelength focusing of laser light using a chromium zone plate
A.G. Nalimov
, S.S. Stafeev, E.S. Kozlova, V.V. Kotlyar, L. O'Faolain, M.V. Kotlyar

 

Samara National Research University, Samara, Russia,
Image Processing Systems Institute of RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,

SUPA, School of Physics and Astronomy of the University of St. Andrews, Scotland

Full text of article: Russian language.

 PDF

Abstract:
We study in which way the parameters of a focal spot generated by a chromium zone plate 15-µm in diameter synthesized by sputtering on a glass substrate and having a focal length equal to the incident wavelength of λ = 532 nm depend on the microrelief height. It is shown numerically that an optimal microrelief height of the zone plate is 70 nm. With these parameters, the minimal size of the focal spot is achieved. Using a scanning near field optical microscope the said zone plate is shown to focus a linearly polarized Gaussian beam into an elliptical focal spot having the full-width at half-maximum of FWHMx = 0.42λ and FWHMy = 0.64λ along the Cartesian axes.

Keywords:
amplitude zone plate, phase zone plate, sharp focus, FDTD method, scanning near field optical microscope.

Citation:
Nalimov AG, Stafeev SS, Kozlova ES, Kotlyar VV, O'Faolain L, Kotlyar MV.  Subwavelength focusing of laser light using a chromium zone plate. Computer Optics 2017; 41(3): 356-362. DOI: 10.18287/2412-6179-2017-41-3-356-362.

References:

  1. Fu Y, Zhou W. Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing. J Nanophoton 2009; 3(1): 033504. DOI:10.1117/1.3159299.
  2. Fu Y, Mote RG, Wang Q, Zhou W. Experimental study of plasmonic structures with variant periods for sub-wavelength focusing: analyses of characterization errors. J Mod Opt 2009; 56(14): 1550-1556. DOI: 10.1080/09500340903180566.
  3. Mote RG, Yu SF, Kumar A, Zhou W, Li XF. Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) underlinearly polarized illumination. Appl Phys B 2011; 102(1): 95-100. DOI: 10.1007/s00340-010-4210-8.
  4. Mote RG, Yu SF, Zhou W, Li XF. Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states. Appl Phys Lett 2009; 95(19): 191113. DOI: 10.1063/1.3263728.
  5. Fu Y, Zhou W, Lim LEN, Du CL, Luo XG. Plasmonic microzone plate: Superfocusing at visible regime. Appl Phys Lett 2007; 91(6): 061124. DOI: 10.1063/1.2769942.
  6. Kotlyar VV, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linearly polarized light. Appl Opt 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
  7. Stafeev SS, Kotlyar VV, О’Faolain L. Subwavelength focusing of laser light by microoptics. J Mod Opt 2013; 60(13): 1050-1059. DOI: 10.1080/09500340.2013.831136.
  8. Wang T, Wang X, Kuang C, Hao X, Liu X. Experimental verification of the far-field subwavelength focusing with multiple concentric nanorings. Appl Phys Lett 2010; 97(23): 231105. DOI: 10.1063/1.3524825.
  9. Venugopalan P, Zhang Q, Li X, Kuipers L, Gu M. Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt Lett 2014; 39(19): 5744-5747. DOI: 10.1364/OL.39.005744.
  10. Chen KR, Chu WH, Fang HC, Liu CP, Huang CH, Chui HC, Chuang CH, Lo YL, Lin CY, Hwung HH, Fuh AYG. Beyond-limit light focusing in the intermediate zone. Opt Lett 2011; 36(23): 4497-4499. DOI: 10.1364/OL.36.004497.
  11. Liu Y, Xu H, Stief F, Zhitenev N, Yu M. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt Express 2011; 19(21): 20233-20243. DOI: 10.1364/OE.19.020233.
  12. Song W, Fang Z, Huang S, Lin F, Zhu X. Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens. Opt Express 2010; 18(14): 14762-14767. DOI: 10.1364/OE.18.014762.
  13. Feng D. 3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna. J Opt Soc Am A 2014; 31(9): 2070-2074. DOI: 10.1364/JO­SAA.31.002070.
  14. Wang H, Deng Y, He J, Gao P, Yao N, Wang C, Luo X. Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures. J Nanophoton 2014; 8(1): 083079. DOI: 10.1117/1.JNP.8.083079.
  15. Zhang M, Du J, Shi H, Yin S, Xia L, Jia B, Gu M, Du C. Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove. Opt Express 2010; 18(14): 14664-14670. DOI: 10.1364/OE.18.014664.
  16. Ji J, Meng Y, Sun L, Wu X, Wang J. Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination. Plasmonics 2015; 11(1): 23-27. DOI: 10.1007/s11468-015-0015-2.
  17. Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X. Super-resolution long-depth focusing by radially polarized light irradiation through plasmonic lens in optical meso-field. Plasmonics 2014; 9(1): 55-60. DOI: 10.1007/s11468-013-9597-8.
  18. Kozlova ES, Kotlyar VV, Nalimov AG. Comparative modeling of amplitude and phase zone plates. Computer Optics 2015; 39(5): 687-693. DOI: 10.18287/0134-2452-2015-39-5-687-693.
  19. Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B 2005; 71(12): 125435. DOI: 10.1103/PhysRevB.71.125435.
  20. Rakic AD, Djurišic AB, Elazar JM, Majewski ML. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 1998; 37(22): 5271-5283. DOI: 10.1364/AO.37.005271.
  21. Vial A, Laroche T, Dridi M, and Le Cunff L. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A 2011; 103(3): 849-853. DOI: 10.1007/s00339-010-6224-9.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20