Modeling the illuminance distribution in the detection plane of a spaceborne Offner hyperspectrometer
A.A. Rastorguev, S.I. Kharitonov, N.L. Kazanskiy

 

Joint Stock Company "Rocket and Space Center" Progress ", Samara, Russia,
Image Processing Systems Institute of the Russian Academy of Sciences - Branch of the FSRS "Crystallography and Photonics" RAS, Samara, Russia,

Samara National Research University, Samara, Russia

Full text of article: Russian language.

 PDF

Abstract:
The modeling of the illuminance distribution in the detection plane of an optical scheme composed of an objective and an Offner spectrometer is conducted. We calculate the illuminance distribution in the detection plane of the hyperspectrometer in the geometric optics approximation. The calculations use models of the atmospheric brightness, earth's surface irradiance, and the spectral transmission of the atmosphere.

Keywords:
hyperspectrometer, Offner scheme, illumination, modeling, spectral atmospheric transmittance.

Citation:
Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling the illuminance distribution in the detection plane of a spaceborne Offner hyperspectrometer. Computer Optics 2017; 41(3): 399-405. DOI: 10.18287/2412-6179-2017-41-3-399-405.

References:

  1. Schowengerdt RA. Remote sensing. Models and methods of image processing. Orlando, FL, USA: Academic Press, Inc.; 2006. ISBN: 978-0-12369-407-8.
  2. Classifier of thematic tasks of assessment of natural resources and the environment, solved using the Earth remote sensing materials. Revision 7. Irkutsk: Baikal Center LLC Publisher, 2008.
  3. Mouroulis P, Sellar RG, Wilson DW, Shea JJ, Green RO. Optical design of a compact imaging spectrometer for planetary mineralogy. Optical Engineering 2007; 46(6): 063001. DOI: 10.1117/1.2749499.
  4. Mouroulis P, Wilson DW, Maker PD, Muller RE. Convex grating types for concentric imaging spectrometers. Applied Optics 1998; 37(31): 7200-7208. DOI: 10.1364/AO.37.007200.
  5. Prieto-Blanco X, Montero-Orille C, González- Nuñez H, Mouriz MD, Lago EL, de la Fuente R. The Offner imaging spectrometer in quadrature. Optics Express 2010; 18(12): 12756-12769. DOI: 10.1364/OE.18.012756.
  6. Prieto-Blanco X, Montero-Orille C, Couce B, de la Fuente R. Analytical design of an Offner imaging spectrometer. Optics Express 2006; 14(20): 9156-9168. DOI: 10.1364/OE.14.009156.
  7. Lee JH, Jang TS, Yang H-S, Rhee S-W. Optical design of a compact imaging spectrometer for STSAT3. Journal of the Optical Society of Korea 2008; 12(4): 262-268.
  8. Lee JH, Lee CW, Kim YM, Kim JW. Optomechanical design of a compact imaging spectrometer for a microsatellite STSAT3. Journal of the Optical Society of Korea 2009; 13(2): 193-200.
  9. Lee JH, Kang KI, Park JH. A very compact imaging spectrometer for the micro-satellite STSAT3. International Journal of Remote Sensing 2011; 32(14): 3935-3946. DOI: 10.1080/01431161003801328.
  10. Lee JH, Jang TS, Kang KI, Rhee S-W. Flight Model Development of a Compact Imaging Spectrometer for a Microsatellite STSAT3. ORSE 2010.  DOI: 10.1364/ORSE.2010.OMB3.
  11. Karpeev SV, Khonina SN, Murdagulov AR, Petrov MV. Alignment and study of prototypes of the Offner hyperspectrometer [In Russian]. Vestnik SSAU 2016; 15(1): 197-206. DOI: 10.18287/2412-7329-2016-15-1-197-206.
  12. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  13. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  14. Kazanskiy NL, Kharitonov SI, Karsakov SI, Khonina SN. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Computer Optics 2014; 38(2): 271-280.
  15. Schroeder G, Traiber H. Technical optics: translated from germ. Ilinsky RE.  Moscow: “Technosphere” Publisher; 2006.
  16. Slyusarev GG. Methods of calculating optical systems. Leningrad: “Mashinostroenie” Publisher; 1969.
  17. Vladimirov VS. Equations of mathematical physics. Moscow: “Nauka” Publisher; 1981.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20